#!/usr/bin/python3 import numpy as np import os import sys import tensorflow as tf import cv2 from distutils.version import StrictVersion from utils import label_map_util from utils import visualization_utils as vis_util switch = 1 import io import socket import struct import time import pickle import zlib # This is needed since the notebook is stored in the object_detection folder. sys.path.append("..") import time from object_detection.utils import ops as utils_ops if StrictVersion(tf.__version__) < StrictVersion('1.12.0'): raise ImportError('Please upgrade your TensorFlow installation to v1.12.*.') # What model to download. encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 90] MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' #not even worth trying #MODEL_NAME="ssd_inception_v2_coco_11_06_2017" # not bad and fast #MODEL_NAME="rfcn_resnet101_coco_11_06_2017" # WORKS BEST BUT takes 4 times longer per image #MODEL_NAME = "faster_rcnn_resnet101_coco_11_06_2017" # too slow MODEL_FILE = MODEL_NAME + '.tar.gz' DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.join('object_detection/data', 'mscoco_label_map.pbtxt') detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) # For the sake of simplicity we will use only 2 images: # image1.jpg # image2.jpg # If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS. PATH_TO_TEST_IMAGES_DIR = 'object_detection/test_images' TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(3, 6) ] # Size, in inches, of the output images. sess = 0 switch = 1 def run_inference_for_single_image(image, graph): global switch global sess with graph.as_default(): if(switch): sess = tf.Session() switch = 0 # Get handles to input and output tensors ops = tf.get_default_graph().get_operations() all_tensor_names = {output.name for op in ops for output in op.outputs} tensor_dict = {} for key in [ 'num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks' ]: tensor_name = key + ':0' if tensor_name in all_tensor_names: tensor_dict[key] = tf.get_default_graph().get_tensor_by_name( tensor_name) if 'detection_masks' in tensor_dict: # The following processing is only for single image detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0]) detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0]) # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size. real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32) detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1]) detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1]) detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( detection_masks, detection_boxes, image.shape[1], image.shape[2]) detection_masks_reframed = tf.cast( tf.greater(detection_masks_reframed, 0.5), tf.uint8) # Follow the convention by adding back the batch dimension tensor_dict['detection_masks'] = tf.expand_dims( detection_masks_reframed, 0) image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0') # Run inference output_dict = sess.run(tensor_dict, feed_dict={image_tensor: image}) # all outputs are float32 numpy arrays, so convert types as appropriate output_dict['num_detections'] = int(output_dict['num_detections'][0]) output_dict['detection_classes'] = output_dict[ 'detection_classes'][0].astype(np.int64) output_dict['detection_boxes'] = output_dict['detection_boxes'][0] output_dict['detection_scores'] = output_dict['detection_scores'][0] if 'detection_masks' in output_dict: output_dict['detection_masks'] = output_dict['detection_masks'][0] return output_dict cut=[-225,-1,-225,-1] a = 1 cam = cv2.VideoCapture(1) conn_switch = False with detection_graph.as_default(): sess = tf.Session() switch = 0 while 1: if(True): ret,image = cam.read() image_np = image[cut[0]:cut[1],cut[2]:cut[3]] #image_np = image_np[int(r[1]):int(r[1]+r[3]),int(r[0]):int(r[0]+r[2])] # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) t1 = time.time() # Actual detection. output_dict = run_inference_for_single_image(image_np_expanded, detection_graph) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, output_dict['detection_boxes'], output_dict['detection_classes'], output_dict['detection_scores'], category_index, instance_masks=output_dict.get('detection_masks'), use_normalized_coordinates=True, line_thickness=8, min_score_thresh=0.4) image[cut[0]:cut[1],cut[2]:cut[3]] = image_np result, frame = cv2.imencode('.jpg', image, encode_param) data = pickle.dumps(frame, 0) size = len(data) if(conn_switch): pass else: try: client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client_socket.connect(('10.10.26.115', 8488)) connection = client_socket.makefile('wb') conn_switch = True except: pass try: client_socket.sendall(struct.pack(">L", size) + data) except: conn_switch = False cv2.imshow("Cam",image) cv2.imshow("Cut",image_np) t2 = time.time() print("time taken for {}".format(t2-t1)) ex_c = [27, ord("q"), ord("Q")] if cv2.waitKey(1) & 0xFF in ex_c: break cv2.destroyAllWindows() cam.release()