# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.export_inference_graph.""" import os import numpy as np import six import tensorflow as tf from google.protobuf import text_format from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from object_detection import exporter from object_detection.builders import graph_rewriter_builder from object_detection.builders import model_builder from object_detection.core import model from object_detection.protos import graph_rewriter_pb2 from object_detection.protos import pipeline_pb2 from object_detection.utils import ops if six.PY2: import mock # pylint: disable=g-import-not-at-top else: from unittest import mock # pylint: disable=g-import-not-at-top slim = tf.contrib.slim class FakeModel(model.DetectionModel): def __init__(self, add_detection_keypoints=False, add_detection_masks=False): self._add_detection_keypoints = add_detection_keypoints self._add_detection_masks = add_detection_masks def preprocess(self, inputs): true_image_shapes = [] # Doesn't matter for the fake model. return tf.identity(inputs), true_image_shapes def predict(self, preprocessed_inputs, true_image_shapes): return {'image': tf.layers.conv2d(preprocessed_inputs, 3, 1)} def postprocess(self, prediction_dict, true_image_shapes): with tf.control_dependencies(prediction_dict.values()): postprocessed_tensors = { 'detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]], tf.float32), 'detection_scores': tf.constant([[0.7, 0.6], [0.9, 0.0]], tf.float32), 'detection_multiclass_scores': tf.constant([[[0.3, 0.7], [0.4, 0.6]], [[0.1, 0.9], [0.0, 0.0]]], tf.float32), 'detection_classes': tf.constant([[0, 1], [1, 0]], tf.float32), 'num_detections': tf.constant([2, 1], tf.float32), 'raw_detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.5, 0.0, 0.5]]], tf.float32), 'raw_detection_scores': tf.constant([[0.7, 0.6], [0.9, 0.5]], tf.float32), } if self._add_detection_keypoints: postprocessed_tensors['detection_keypoints'] = tf.constant( np.arange(48).reshape([2, 2, 6, 2]), tf.float32) if self._add_detection_masks: postprocessed_tensors['detection_masks'] = tf.constant( np.arange(64).reshape([2, 2, 4, 4]), tf.float32) return postprocessed_tensors def restore_map(self, checkpoint_path, fine_tune_checkpoint_type): pass def loss(self, prediction_dict, true_image_shapes): pass def regularization_losses(self): pass def updates(self): pass class ExportInferenceGraphTest(tf.test.TestCase): def _save_checkpoint_from_mock_model(self, checkpoint_path, use_moving_averages, enable_quantization=False): g = tf.Graph() with g.as_default(): mock_model = FakeModel() preprocessed_inputs, true_image_shapes = mock_model.preprocess( tf.placeholder(tf.float32, shape=[None, None, None, 3])) predictions = mock_model.predict(preprocessed_inputs, true_image_shapes) mock_model.postprocess(predictions, true_image_shapes) if use_moving_averages: tf.train.ExponentialMovingAverage(0.0).apply() tf.train.get_or_create_global_step() if enable_quantization: graph_rewriter_config = graph_rewriter_pb2.GraphRewriter() graph_rewriter_config.quantization.delay = 500000 graph_rewriter_fn = graph_rewriter_builder.build( graph_rewriter_config, is_training=False) graph_rewriter_fn() saver = tf.train.Saver() init = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init) saver.save(sess, checkpoint_path) def _load_inference_graph(self, inference_graph_path, is_binary=True): od_graph = tf.Graph() with od_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(inference_graph_path) as fid: if is_binary: od_graph_def.ParseFromString(fid.read()) else: text_format.Parse(fid.read(), od_graph_def) tf.import_graph_def(od_graph_def, name='') return od_graph def _create_tf_example(self, image_array): with self.test_session(): encoded_image = tf.image.encode_jpeg(tf.constant(image_array)).eval() def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) example = tf.train.Example(features=tf.train.Features(feature={ 'image/encoded': _bytes_feature(encoded_image), 'image/format': _bytes_feature('jpg'), 'image/source_id': _bytes_feature('image_id') })).SerializeToString() return example def test_export_graph_with_image_tensor_input(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel() output_directory = os.path.join(tmp_dir, 'output') pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False exporter.export_inference_graph( input_type='image_tensor', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) self.assertTrue(os.path.exists(os.path.join( output_directory, 'saved_model', 'saved_model.pb'))) def test_write_inference_graph(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel() output_directory = os.path.join(tmp_dir, 'output') pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False exporter.export_inference_graph( input_type='image_tensor', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory, write_inference_graph=True) self.assertTrue(os.path.exists(os.path.join( output_directory, 'inference_graph.pbtxt'))) def test_export_graph_with_fixed_size_image_tensor_input(self): input_shape = [1, 320, 320, 3] tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model( trained_checkpoint_prefix, use_moving_averages=False) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel() output_directory = os.path.join(tmp_dir, 'output') pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False exporter.export_inference_graph( input_type='image_tensor', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory, input_shape=input_shape) saved_model_path = os.path.join(output_directory, 'saved_model') self.assertTrue( os.path.exists(os.path.join(saved_model_path, 'saved_model.pb'))) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: meta_graph = tf.saved_model.loader.load( sess, [tf.saved_model.tag_constants.SERVING], saved_model_path) signature = meta_graph.signature_def['serving_default'] input_tensor_name = signature.inputs['inputs'].name image_tensor = od_graph.get_tensor_by_name(input_tensor_name) self.assertSequenceEqual(image_tensor.get_shape().as_list(), input_shape) def test_export_graph_with_tf_example_input(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel() output_directory = os.path.join(tmp_dir, 'output') pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False exporter.export_inference_graph( input_type='tf_example', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) self.assertTrue(os.path.exists(os.path.join( output_directory, 'saved_model', 'saved_model.pb'))) def test_export_graph_with_encoded_image_string_input(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel() output_directory = os.path.join(tmp_dir, 'output') pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False exporter.export_inference_graph( input_type='encoded_image_string_tensor', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) self.assertTrue(os.path.exists(os.path.join( output_directory, 'saved_model', 'saved_model.pb'))) def _get_variables_in_checkpoint(self, checkpoint_file): return set([ var_name for var_name, _ in tf.train.list_variables(checkpoint_file)]) def test_replace_variable_values_with_moving_averages(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') new_checkpoint_prefix = os.path.join(tmp_dir, 'new.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) graph = tf.Graph() with graph.as_default(): fake_model = FakeModel() preprocessed_inputs, true_image_shapes = fake_model.preprocess( tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3])) predictions = fake_model.predict(preprocessed_inputs, true_image_shapes) fake_model.postprocess(predictions, true_image_shapes) exporter.replace_variable_values_with_moving_averages( graph, trained_checkpoint_prefix, new_checkpoint_prefix) expected_variables = set(['conv2d/bias', 'conv2d/kernel']) variables_in_old_ckpt = self._get_variables_in_checkpoint( trained_checkpoint_prefix) self.assertIn('conv2d/bias/ExponentialMovingAverage', variables_in_old_ckpt) self.assertIn('conv2d/kernel/ExponentialMovingAverage', variables_in_old_ckpt) variables_in_new_ckpt = self._get_variables_in_checkpoint( new_checkpoint_prefix) self.assertTrue(expected_variables.issubset(variables_in_new_ckpt)) self.assertNotIn('conv2d/bias/ExponentialMovingAverage', variables_in_new_ckpt) self.assertNotIn('conv2d/kernel/ExponentialMovingAverage', variables_in_new_ckpt) def test_export_graph_with_moving_averages(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) output_directory = os.path.join(tmp_dir, 'output') with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel() pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = True exporter.export_inference_graph( input_type='image_tensor', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) self.assertTrue(os.path.exists(os.path.join( output_directory, 'saved_model', 'saved_model.pb'))) expected_variables = set(['conv2d/bias', 'conv2d/kernel', 'global_step']) actual_variables = set( [var_name for var_name, _ in tf.train.list_variables(output_directory)]) self.assertTrue(expected_variables.issubset(actual_variables)) def test_export_model_with_quantization_nodes(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model( trained_checkpoint_prefix, use_moving_averages=False, enable_quantization=True) output_directory = os.path.join(tmp_dir, 'output') inference_graph_path = os.path.join(output_directory, 'inference_graph.pbtxt') with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel() pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() text_format.Merge( """graph_rewriter { quantization { delay: 50000 activation_bits: 8 weight_bits: 8 } }""", pipeline_config) exporter.export_inference_graph( input_type='image_tensor', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory, write_inference_graph=True) self._load_inference_graph(inference_graph_path, is_binary=False) has_quant_nodes = False for v in tf.global_variables(): if v.op.name.endswith('act_quant/min'): has_quant_nodes = True break self.assertTrue(has_quant_nodes) def test_export_model_with_all_output_nodes(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) output_directory = os.path.join(tmp_dir, 'output') inference_graph_path = os.path.join(output_directory, 'frozen_inference_graph.pb') with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() exporter.export_inference_graph( input_type='image_tensor', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) inference_graph = self._load_inference_graph(inference_graph_path) with self.test_session(graph=inference_graph): inference_graph.get_tensor_by_name('image_tensor:0') inference_graph.get_tensor_by_name('detection_boxes:0') inference_graph.get_tensor_by_name('detection_scores:0') inference_graph.get_tensor_by_name('detection_multiclass_scores:0') inference_graph.get_tensor_by_name('detection_classes:0') inference_graph.get_tensor_by_name('detection_keypoints:0') inference_graph.get_tensor_by_name('detection_masks:0') inference_graph.get_tensor_by_name('num_detections:0') def test_export_model_with_detection_only_nodes(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) output_directory = os.path.join(tmp_dir, 'output') inference_graph_path = os.path.join(output_directory, 'frozen_inference_graph.pb') with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel(add_detection_masks=False) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() exporter.export_inference_graph( input_type='image_tensor', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) inference_graph = self._load_inference_graph(inference_graph_path) with self.test_session(graph=inference_graph): inference_graph.get_tensor_by_name('image_tensor:0') inference_graph.get_tensor_by_name('detection_boxes:0') inference_graph.get_tensor_by_name('detection_scores:0') inference_graph.get_tensor_by_name('detection_multiclass_scores:0') inference_graph.get_tensor_by_name('detection_classes:0') inference_graph.get_tensor_by_name('num_detections:0') with self.assertRaises(KeyError): inference_graph.get_tensor_by_name('detection_keypoints:0') inference_graph.get_tensor_by_name('detection_masks:0') def test_export_and_run_inference_with_image_tensor(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) output_directory = os.path.join(tmp_dir, 'output') inference_graph_path = os.path.join(output_directory, 'frozen_inference_graph.pb') with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False exporter.export_inference_graph( input_type='image_tensor', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) inference_graph = self._load_inference_graph(inference_graph_path) with self.test_session(graph=inference_graph) as sess: image_tensor = inference_graph.get_tensor_by_name('image_tensor:0') boxes = inference_graph.get_tensor_by_name('detection_boxes:0') scores = inference_graph.get_tensor_by_name('detection_scores:0') classes = inference_graph.get_tensor_by_name('detection_classes:0') keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0') masks = inference_graph.get_tensor_by_name('detection_masks:0') num_detections = inference_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={image_tensor: np.ones((2, 4, 4, 3)).astype(np.uint8)}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1]) def _create_encoded_image_string(self, image_array_np, encoding_format): od_graph = tf.Graph() with od_graph.as_default(): if encoding_format == 'jpg': encoded_string = tf.image.encode_jpeg(image_array_np) elif encoding_format == 'png': encoded_string = tf.image.encode_png(image_array_np) else: raise ValueError('Supports only the following formats: `jpg`, `png`') with self.test_session(graph=od_graph): return encoded_string.eval() def test_export_and_run_inference_with_encoded_image_string_tensor(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) output_directory = os.path.join(tmp_dir, 'output') inference_graph_path = os.path.join(output_directory, 'frozen_inference_graph.pb') with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False exporter.export_inference_graph( input_type='encoded_image_string_tensor', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) inference_graph = self._load_inference_graph(inference_graph_path) jpg_image_str = self._create_encoded_image_string( np.ones((4, 4, 3)).astype(np.uint8), 'jpg') png_image_str = self._create_encoded_image_string( np.ones((4, 4, 3)).astype(np.uint8), 'png') with self.test_session(graph=inference_graph) as sess: image_str_tensor = inference_graph.get_tensor_by_name( 'encoded_image_string_tensor:0') boxes = inference_graph.get_tensor_by_name('detection_boxes:0') scores = inference_graph.get_tensor_by_name('detection_scores:0') multiclass_scores = inference_graph.get_tensor_by_name( 'detection_multiclass_scores:0') classes = inference_graph.get_tensor_by_name('detection_classes:0') keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0') masks = inference_graph.get_tensor_by_name('detection_masks:0') num_detections = inference_graph.get_tensor_by_name('num_detections:0') for image_str in [jpg_image_str, png_image_str]: image_str_batch_np = np.hstack([image_str]* 2) (boxes_np, scores_np, multiclass_scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [ boxes, scores, multiclass_scores, classes, keypoints, masks, num_detections ], feed_dict={image_str_tensor: image_str_batch_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(multiclass_scores_np, [[[0.3, 0.7], [0.4, 0.6]], [[0.1, 0.9], [0.0, 0.0]]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1]) def test_raise_runtime_error_on_images_with_different_sizes(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) output_directory = os.path.join(tmp_dir, 'output') inference_graph_path = os.path.join(output_directory, 'frozen_inference_graph.pb') with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False exporter.export_inference_graph( input_type='encoded_image_string_tensor', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) inference_graph = self._load_inference_graph(inference_graph_path) large_image = self._create_encoded_image_string( np.ones((4, 4, 3)).astype(np.uint8), 'jpg') small_image = self._create_encoded_image_string( np.ones((2, 2, 3)).astype(np.uint8), 'jpg') image_str_batch_np = np.hstack([large_image, small_image]) with self.test_session(graph=inference_graph) as sess: image_str_tensor = inference_graph.get_tensor_by_name( 'encoded_image_string_tensor:0') boxes = inference_graph.get_tensor_by_name('detection_boxes:0') scores = inference_graph.get_tensor_by_name('detection_scores:0') classes = inference_graph.get_tensor_by_name('detection_classes:0') keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0') masks = inference_graph.get_tensor_by_name('detection_masks:0') num_detections = inference_graph.get_tensor_by_name('num_detections:0') with self.assertRaisesRegexp(tf.errors.InvalidArgumentError, 'TensorArray.*shape'): sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={image_str_tensor: image_str_batch_np}) def test_export_and_run_inference_with_tf_example(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) output_directory = os.path.join(tmp_dir, 'output') inference_graph_path = os.path.join(output_directory, 'frozen_inference_graph.pb') with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False exporter.export_inference_graph( input_type='tf_example', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) inference_graph = self._load_inference_graph(inference_graph_path) tf_example_np = np.expand_dims(self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8)), axis=0) with self.test_session(graph=inference_graph) as sess: tf_example = inference_graph.get_tensor_by_name('tf_example:0') boxes = inference_graph.get_tensor_by_name('detection_boxes:0') scores = inference_graph.get_tensor_by_name('detection_scores:0') classes = inference_graph.get_tensor_by_name('detection_classes:0') keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0') masks = inference_graph.get_tensor_by_name('detection_masks:0') num_detections = inference_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1]) def test_write_frozen_graph(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) output_directory = os.path.join(tmp_dir, 'output') inference_graph_path = os.path.join(output_directory, 'frozen_inference_graph.pb') tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) outputs, _ = exporter.build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) output_node_names = ','.join(outputs.keys()) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() exporter.freeze_graph_with_def_protos( input_graph_def=tf.get_default_graph().as_graph_def(), input_saver_def=input_saver_def, input_checkpoint=trained_checkpoint_prefix, output_node_names=output_node_names, restore_op_name='save/restore_all', filename_tensor_name='save/Const:0', output_graph=inference_graph_path, clear_devices=True, initializer_nodes='') inference_graph = self._load_inference_graph(inference_graph_path) tf_example_np = np.expand_dims(self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8)), axis=0) with self.test_session(graph=inference_graph) as sess: tf_example = inference_graph.get_tensor_by_name('tf_example:0') boxes = inference_graph.get_tensor_by_name('detection_boxes:0') scores = inference_graph.get_tensor_by_name('detection_scores:0') classes = inference_graph.get_tensor_by_name('detection_classes:0') keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0') masks = inference_graph.get_tensor_by_name('detection_masks:0') num_detections = inference_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1]) def test_export_graph_saves_pipeline_file(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) output_directory = os.path.join(tmp_dir, 'output') with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel() pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() exporter.export_inference_graph( input_type='image_tensor', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) expected_pipeline_path = os.path.join( output_directory, 'pipeline.config') self.assertTrue(os.path.exists(expected_pipeline_path)) written_pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(expected_pipeline_path, 'r') as f: proto_str = f.read() text_format.Merge(proto_str, written_pipeline_config) self.assertProtoEquals(pipeline_config, written_pipeline_config) def test_export_saved_model_and_run_inference(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') saved_model_path = os.path.join(output_directory, 'saved_model') with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False exporter.export_inference_graph( input_type='tf_example', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: meta_graph = tf.saved_model.loader.load( sess, [tf.saved_model.tag_constants.SERVING], saved_model_path) signature = meta_graph.signature_def['serving_default'] input_tensor_name = signature.inputs['inputs'].name tf_example = od_graph.get_tensor_by_name(input_tensor_name) boxes = od_graph.get_tensor_by_name( signature.outputs['detection_boxes'].name) scores = od_graph.get_tensor_by_name( signature.outputs['detection_scores'].name) classes = od_graph.get_tensor_by_name( signature.outputs['detection_classes'].name) keypoints = od_graph.get_tensor_by_name( signature.outputs['detection_keypoints'].name) masks = od_graph.get_tensor_by_name( signature.outputs['detection_masks'].name) num_detections = od_graph.get_tensor_by_name( signature.outputs['num_detections'].name) (boxes_np, scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1]) def test_write_saved_model(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') saved_model_path = os.path.join(output_directory, 'saved_model') tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) outputs, placeholder_tensor = exporter.build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) output_node_names = ','.join(outputs.keys()) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() frozen_graph_def = exporter.freeze_graph_with_def_protos( input_graph_def=tf.get_default_graph().as_graph_def(), input_saver_def=input_saver_def, input_checkpoint=trained_checkpoint_prefix, output_node_names=output_node_names, restore_op_name='save/restore_all', filename_tensor_name='save/Const:0', output_graph='', clear_devices=True, initializer_nodes='') exporter.write_saved_model( saved_model_path=saved_model_path, frozen_graph_def=frozen_graph_def, inputs=placeholder_tensor, outputs=outputs) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: meta_graph = tf.saved_model.loader.load( sess, [tf.saved_model.tag_constants.SERVING], saved_model_path) signature = meta_graph.signature_def['serving_default'] input_tensor_name = signature.inputs['inputs'].name tf_example = od_graph.get_tensor_by_name(input_tensor_name) boxes = od_graph.get_tensor_by_name( signature.outputs['detection_boxes'].name) scores = od_graph.get_tensor_by_name( signature.outputs['detection_scores'].name) classes = od_graph.get_tensor_by_name( signature.outputs['detection_classes'].name) keypoints = od_graph.get_tensor_by_name( signature.outputs['detection_keypoints'].name) masks = od_graph.get_tensor_by_name( signature.outputs['detection_masks'].name) num_detections = od_graph.get_tensor_by_name( signature.outputs['num_detections'].name) (boxes_np, scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1]) def test_export_checkpoint_and_run_inference(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') model_path = os.path.join(output_directory, 'model.ckpt') meta_graph_path = model_path + '.meta' with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False exporter.export_inference_graph( input_type='tf_example', pipeline_config=pipeline_config, trained_checkpoint_prefix=trained_checkpoint_prefix, output_directory=output_directory) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: new_saver = tf.train.import_meta_graph(meta_graph_path) new_saver.restore(sess, model_path) tf_example = od_graph.get_tensor_by_name('tf_example:0') boxes = od_graph.get_tensor_by_name('detection_boxes:0') scores = od_graph.get_tensor_by_name('detection_scores:0') classes = od_graph.get_tensor_by_name('detection_classes:0') keypoints = od_graph.get_tensor_by_name('detection_keypoints:0') masks = od_graph.get_tensor_by_name('detection_masks:0') num_detections = od_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1]) def test_write_graph_and_checkpoint(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') model_path = os.path.join(output_directory, 'model.ckpt') meta_graph_path = model_path + '.meta' tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) exporter.build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() exporter.write_graph_and_checkpoint( inference_graph_def=tf.get_default_graph().as_graph_def(), model_path=model_path, input_saver_def=input_saver_def, trained_checkpoint_prefix=trained_checkpoint_prefix) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: new_saver = tf.train.import_meta_graph(meta_graph_path) new_saver.restore(sess, model_path) tf_example = od_graph.get_tensor_by_name('tf_example:0') boxes = od_graph.get_tensor_by_name('detection_boxes:0') scores = od_graph.get_tensor_by_name('detection_scores:0') raw_boxes = od_graph.get_tensor_by_name('raw_detection_boxes:0') raw_scores = od_graph.get_tensor_by_name('raw_detection_scores:0') classes = od_graph.get_tensor_by_name('detection_classes:0') keypoints = od_graph.get_tensor_by_name('detection_keypoints:0') masks = od_graph.get_tensor_by_name('detection_masks:0') num_detections = od_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, raw_boxes_np, raw_scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, raw_boxes, raw_scores, classes, keypoints, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(raw_boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.5, 0.0, 0.5]]]) self.assertAllClose(raw_scores_np, [[0.7, 0.6], [0.9, 0.5]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1]) def test_rewrite_nn_resize_op(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8)) s = ops.nearest_neighbor_upsampling(x, 2) t = s + y exporter.rewrite_nn_resize_op() resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0], x) self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found) def test_rewrite_nn_resize_op_quantized(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) x_conv = tf.contrib.slim.conv2d(x, 8, 1) y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8)) s = ops.nearest_neighbor_upsampling(x_conv, 2) t = s + y graph_rewriter_config = graph_rewriter_pb2.GraphRewriter() graph_rewriter_config.quantization.delay = 500000 graph_rewriter_fn = graph_rewriter_builder.build( graph_rewriter_config, is_training=False) graph_rewriter_fn() exporter.rewrite_nn_resize_op(is_quantized=True) resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars') self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found) if __name__ == '__main__': tf.test.main()