from modules import utils from flask import Flask, request, Response from flask_restful import Resource, Api from PIL import Image import base64 import json import sys import os import io if sys.platform == "win32": import tensorflow as tf import numpy as np import pickle sys.path.insert(0, r'C:\Users\Tednokent01\Downloads\MyCity\traffic_analyzer') from utils import label_map_util from utils import visualization_utils as vis_util app = Flask(__name__) api = Api(app) db_path = os.path.join(app.root_path, 'databases', 'crashes.json') with open(db_path, 'r') as f: crashes = json.load(f) users_path = os.path.join(app.root_path, 'databases', 'users.json') with open(users_path, 'r') as f: users = json.load(f) if sys.platform == "win32": PATH_TO_LABELS = '../../traffic_analyzer/object_detection/data/mscoco_label_map.pbtxt' PATH_TO_CKPT = 'modules/faster_rcnn_resnet101_kitti_2018_01_28/frozen_inference_graph.pb' NUM_CLASSES = 8 detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) def process_img(img): pass class Crash(Resource): def post(self): message = request.form['message'] base64_img = request.form['img'] id = request.form['id'] process_img(Image.open(io.BytesIO(base64.b64decode(base64_img)))) return id