#!/usr/bin/python3
|
|
|
|
import pickle
|
|
import threading
|
|
import sys,getpass
|
|
import cv2
|
|
import os
|
|
import numpy as np
|
|
import psutil
|
|
import subprocess
|
|
|
|
from telnetlib import Telnet
|
|
|
|
from utils import label_map_util
|
|
from utils import visualization_utils as vis_util
|
|
|
|
if getpass.getuser() == "tedankara":
|
|
|
|
import tensorflow as tf
|
|
from distutils.version import StrictVersion
|
|
|
|
if StrictVersion(tf.__version__) < StrictVersion('1.12.0'):
|
|
raise ImportError('Please upgrade your TensorFlow installation to v1.12.*.')
|
|
else:
|
|
# import psutil
|
|
pass
|
|
|
|
import json
|
|
|
|
import base64
|
|
from PIL import Image
|
|
from io import BytesIO
|
|
from urllib.parse import urlencode
|
|
from urllib.request import Request, urlopen
|
|
from imutils.video import VideoStream
|
|
import ssl
|
|
|
|
switch = 1
|
|
|
|
import socket
|
|
|
|
# This is needed since the notebook is stored in the object_detection folder.
|
|
sys.path.append("..")
|
|
import time
|
|
from object_detection.utils import ops as utils_ops
|
|
|
|
TELNET = True
|
|
|
|
AI_IP = '127.0.0.1'
|
|
LIGHT_IP = '192.168.2.174'
|
|
context = ssl._create_unverified_context()
|
|
if TELNET:
|
|
tn = Telnet(LIGHT_IP, 31)
|
|
light_green = False
|
|
|
|
# What model to download.
|
|
|
|
|
|
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 90]
|
|
|
|
PATH_TO_LABELS = os.path.join('object_detection/data', 'mscoco_label_map.pbtxt')
|
|
|
|
|
|
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
|
|
|
|
|
|
|
|
def load_image_into_numpy_array(image):
|
|
(im_width, im_height) = image.size
|
|
return np.array(image.getdata()).reshape(
|
|
(im_height, im_width, 3)).astype(np.uint8)
|
|
|
|
data = {"gpu_temp":"10C","gpu_load":"15%","cpu_temp":"47C","cpu_load":"15%","mem_temp":"NaN","mem_load":"17%","fan_speed":"10000RPM"}
|
|
|
|
|
|
def get_temps():
|
|
global data
|
|
temps = psutil.sensors_temperatures()
|
|
result = subprocess.run(['nvidia-smi', '--query-gpu=utilization.memory', '--format=csv'] , stdout=subprocess.PIPE)
|
|
data["gpu_load"] = result.stdout.decode("utf-8").split("\n")[1]
|
|
result = subprocess.run(['nvidia-smi', '--query-gpu=temperature.gpu', '--format=csv'] , stdout=subprocess.PIPE)
|
|
data["gpu_temp"] = result.stdout.decode("utf-8").split("\n")[1]+"°C"
|
|
data["cpu_temp"] = str(int(temps["coretemp"][0][1]))+"°C"
|
|
data["cpu_load"] = str(psutil.cpu_percent())+"%"
|
|
data["mem_load"] = str(dict(psutil.virtual_memory()._asdict())["percent"])+"%"
|
|
data["fan_speed"] = str(psutil.sensors_fans()["dell_smm"][0][1])+"RPM"
|
|
|
|
|
|
def run_inference_for_single_image(image):
|
|
_, buffer = cv2.imencode('.jpg', image)
|
|
img_base64 = base64.b64encode(buffer).decode('ascii')
|
|
url = 'https://%s:5001/ai' % AI_IP # Set destination URL here
|
|
post_fields = {'img': img_base64,"type":"coco"} # Set POST fields here
|
|
request = Request(url, urlencode(post_fields).encode())
|
|
data = urlopen(request, context=context).read().decode("ascii")
|
|
output_dict = json.loads(data)
|
|
return output_dict
|
|
|
|
kill = True
|
|
|
|
def listener(port=8385):
|
|
serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
|
serversocket.bind((socket.gethostname(), port))
|
|
serversocket.listen(5)
|
|
while kill:
|
|
serversocket.accept()
|
|
|
|
print('Bye!')
|
|
|
|
def lights_on():
|
|
global light_green
|
|
light_green = True
|
|
tn.write(b"1-0")
|
|
time.sleep(1)
|
|
tn.write(b"2-0")
|
|
time.sleep(10)
|
|
light_green = False
|
|
tn.write(b"0-1")
|
|
time.sleep(1)
|
|
tn.write(b"0-2")
|
|
|
|
cut = (150, 250, 250, 150)
|
|
cut_send = [0, 0, 0, 0]
|
|
img_counter = 0
|
|
socket_switch = True
|
|
|
|
thread = threading.Thread(target=listener)
|
|
thread.start()
|
|
|
|
cam = VideoStream(src=0).start()
|
|
|
|
|
|
switch = 0
|
|
get_temps()
|
|
# (left, right, top, bottom)
|
|
ambulance_coordinates = (150, 400, 250, 400)
|
|
|
|
reps = -1
|
|
reps_vid = 0
|
|
|
|
while 1:
|
|
image = cam.read()
|
|
reps_vid += 1
|
|
|
|
reps += 1
|
|
try: # Kavşak
|
|
t1 = time.time()
|
|
image_np = image
|
|
output_dict = run_inference_for_single_image(image_np)
|
|
|
|
height, width, channels = image_np.shape
|
|
cv2.imshow('frmmi', image[ambulance_coordinates[2]:ambulance_coordinates[3], ambulance_coordinates[0]:ambulance_coordinates[1]])
|
|
|
|
out_dict = {'detection_boxes': [], 'detection_classes': [], 'detection_scores': []}
|
|
for index,i in enumerate(output_dict['detection_classes']):
|
|
cont = False
|
|
if i in [3, 6, 8,44,77]: # Car, bus, truck
|
|
score = output_dict['detection_scores'][index]
|
|
if score > 0.3:
|
|
if not any((output_dict['detection_boxes'][index] == b) for b in out_dict['detection_boxes']):
|
|
avg_x = (output_dict['detection_boxes'][index][0] + output_dict['detection_boxes'][index][2])/2
|
|
avg_y = (output_dict['detection_boxes'][index][1] + output_dict['detection_boxes'][index][3])/2
|
|
for box in out_dict['detection_boxes']:
|
|
avg_box_x = (box[0] + box[2])/2
|
|
avg_box_y = (box[1] + box[3])/2
|
|
if abs(avg_x-avg_box_x) < 0.1 and abs(avg_y-avg_box_y) < 0.1:
|
|
cont = True
|
|
break
|
|
if cont:
|
|
continue
|
|
out_dict['detection_classes'].append(i)
|
|
out_dict['detection_boxes'].append(output_dict['detection_boxes'][index])
|
|
out_dict['detection_scores'].append(output_dict['detection_scores'][index])
|
|
|
|
out_dict['detection_classes'] = np.array(out_dict['detection_classes'])
|
|
out_dict['detection_boxes'] = np.array(out_dict['detection_boxes'])
|
|
out_dict['detection_scores'] = np.array(out_dict['detection_scores'])
|
|
|
|
im_height, im_width, _ = image_np.shape
|
|
if not light_green and TELNET:
|
|
for index, box in enumerate(out_dict['detection_boxes']):
|
|
box = tuple(map(int, (box[1] * im_width, box[3] * im_width, box[0] * im_height, box[2] * im_height)))
|
|
# (left, right, top, bottom)
|
|
if abs((box[0] + box[1])/2 - (ambulance_coordinates[0] + ambulance_coordinates[1])/2) < 25 and \
|
|
abs((box[2] + box[3])/2 - (ambulance_coordinates[2] + ambulance_coordinates[3])/2) < 25:
|
|
print('ambulance')
|
|
threading.Thread(target=lights_on).start()
|
|
|
|
vis_util.visualize_boxes_and_labels_on_image_array(
|
|
image_np,
|
|
out_dict['detection_boxes'],
|
|
out_dict['detection_classes'],
|
|
out_dict['detection_scores'],
|
|
category_index,
|
|
instance_masks=out_dict.get('detection_masks'),
|
|
use_normalized_coordinates=True,
|
|
line_thickness=8,
|
|
min_score_thresh=0.3
|
|
)
|
|
#cv2.imshow('frame', image_np)
|
|
#ex_c = [27, ord("q"), ord("Q")]
|
|
#if cv2.waitKey(1) & 0xFF in ex_c:
|
|
# break
|
|
|
|
t2 = time.time()
|
|
print("time taken for {}".format(t2-t1))
|
|
if not sys.platform == "win32" and t2-t1 < 0.1:
|
|
time.sleep(0.1-(t2-t1))
|
|
send_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
if socket_switch:
|
|
try:
|
|
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
|
client_socket.settimeout(0.1)
|
|
client_socket.connect(('127.0.0.1', 8485))
|
|
connection = client_socket.makefile('wb')
|
|
socket_switch = False
|
|
except:
|
|
socket_switch = True
|
|
continue
|
|
try:
|
|
crop_img = send_image.copy(order='C')
|
|
crop_img = Image.fromarray(crop_img, "RGB")
|
|
buffered = BytesIO()
|
|
crop_img.save(buffered, format="JPEG")
|
|
img = base64.b64encode(buffered.getvalue()).decode("ascii")
|
|
lens = [len(send_image), 0, len(send_image[0])]
|
|
for i in range(0,len(cut), 2):
|
|
if cut[i] < 0:
|
|
cut_send[i] = lens[i] + cut[i]
|
|
cut_send[i+1] = abs(cut[i])-abs(cut[i+1])
|
|
client_socket.sendall(json.dumps({"image_full":img,"image_sizes":{"x":90,"y":0,"width":140,"height":140},"load":data}).encode('gbk')+b"\n")
|
|
img_counter += 1
|
|
except:
|
|
socket_switch = True
|
|
|
|
if img_counter % 10 == 0:
|
|
get_temps()
|
|
pass
|
|
|
|
except Exception as e:
|
|
if hasattr(e, 'message'):
|
|
print(e.message)
|
|
else:
|
|
print(e)
|
|
break
|
|
|
|
|
|
|
|
if not socket_switch:
|
|
client_socket.sendall(b"Bye\n")
|
|
cam.release()
|
|
|
|
|
|
cv2.destroyAllWindows()
|
|
cam.stop()
|
|
kill = False
|
|
thread.join()
|