You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

147 lines
6.0 KiB

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tensorflow ops to calibrate class predictions and background class."""
import tensorflow as tf
from object_detection.utils import shape_utils
def _find_interval_containing_new_value(x, new_value):
"""Find the index of x (ascending-ordered) after which new_value occurs."""
new_value_shape = shape_utils.combined_static_and_dynamic_shape(new_value)[0]
x_shape = shape_utils.combined_static_and_dynamic_shape(x)[0]
compare = tf.cast(tf.reshape(new_value, shape=(new_value_shape, 1)) >=
tf.reshape(x, shape=(1, x_shape)),
dtype=tf.int32)
diff = compare[:, 1:] - compare[:, :-1]
interval_idx = tf.argmin(diff, axis=1)
return interval_idx
def _tf_linear_interp1d(x_to_interpolate, fn_x, fn_y):
"""Tensorflow implementation of 1d linear interpolation.
Args:
x_to_interpolate: tf.float32 Tensor of shape (num_examples,) over which 1d
linear interpolation is performed.
fn_x: Monotonically-increasing, non-repeating tf.float32 Tensor of shape
(length,) used as the domain to approximate a function.
fn_y: tf.float32 Tensor of shape (length,) used as the range to approximate
a function.
Returns:
tf.float32 Tensor of shape (num_examples,)
"""
x_pad = tf.concat([fn_x[:1] - 1, fn_x, fn_x[-1:] + 1], axis=0)
y_pad = tf.concat([fn_y[:1], fn_y, fn_y[-1:]], axis=0)
interval_idx = _find_interval_containing_new_value(x_pad, x_to_interpolate)
# Interpolate
alpha = (
(x_to_interpolate - tf.gather(x_pad, interval_idx)) /
(tf.gather(x_pad, interval_idx + 1) - tf.gather(x_pad, interval_idx)))
interpolation = ((1 - alpha) * tf.gather(y_pad, interval_idx) +
alpha * tf.gather(y_pad, interval_idx + 1))
return interpolation
def _function_approximation_proto_to_tf_tensors(x_y_pairs_message):
"""Extracts (x,y) pairs from a XYPairs message.
Args:
x_y_pairs_message: calibration_pb2..XYPairs proto
Returns:
tf_x: tf.float32 tensor of shape (number_xy_pairs,) for function domain.
tf_y: tf.float32 tensor of shape (number_xy_pairs,) for function range.
"""
tf_x = tf.convert_to_tensor([x_y_pair.x
for x_y_pair
in x_y_pairs_message.x_y_pair],
dtype=tf.float32)
tf_y = tf.convert_to_tensor([x_y_pair.y
for x_y_pair
in x_y_pairs_message.x_y_pair],
dtype=tf.float32)
return tf_x, tf_y
def build(calibration_config):
"""Returns a function that calibrates Tensorflow model scores.
All returned functions are expected to apply positive monotonic
transformations to inputs (i.e. score ordering is strictly preserved or
adjacent scores are mapped to the same score, but an input of lower value
should never be exceed an input of higher value after transformation). For
class-agnostic calibration, positive monotonicity should hold across all
scores. In class-specific cases, positive monotonicity should hold within each
class.
Args:
calibration_config: calibration_pb2.CalibrationConfig proto.
Returns:
Function that that accepts class_predictions_with_background and calibrates
the output based on calibration_config's parameters.
Raises:
ValueError: No calibration builder defined for "Oneof" in
calibration_config.
"""
# Linear Interpolation (usually used as a result of calibration via
# isotonic regression).
if calibration_config.WhichOneof('calibrator') == 'function_approximation':
def calibration_fn(class_predictions_with_background):
"""Calibrate predictions via 1-d linear interpolation.
Predictions scores are linearly interpolated based on class-agnostic
function approximations. Note that the 0-indexed background class may
also transformed.
Args:
class_predictions_with_background: tf.float32 tensor of shape
[batch_size, num_anchors, num_classes + 1] containing scores on the
interval [0,1]. This is usually produced by a sigmoid or softmax layer
and the result of calling the `predict` method of a detection model.
Returns:
tf.float32 tensor of shape [batch_size, num_anchors, num_classes] if
background class is not present (else shape is
[batch_size, num_anchors, num_classes + 1]) on the interval [0, 1].
"""
# Flattening Tensors and then reshaping at the end.
flat_class_predictions_with_background = tf.reshape(
class_predictions_with_background, shape=[-1])
fn_x, fn_y = _function_approximation_proto_to_tf_tensors(
calibration_config.function_approximation.x_y_pairs)
updated_scores = _tf_linear_interp1d(
flat_class_predictions_with_background, fn_x, fn_y)
# Un-flatten the scores
original_detections_shape = shape_utils.combined_static_and_dynamic_shape(
class_predictions_with_background)
calibrated_class_predictions_with_background = tf.reshape(
updated_scores,
shape=original_detections_shape,
name='calibrate_scores')
return calibrated_class_predictions_with_background
# TODO(zbeaver): Add sigmoid calibration and per-class isotonic regression.
else:
raise ValueError('No calibration builder defined for "Oneof" in '
'calibration_config.')
return calibration_fn