You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

418 lines
16 KiB

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Builder function to construct tf-slim arg_scope for convolution, fc ops."""
import tensorflow as tf
from object_detection.core import freezable_batch_norm
from object_detection.protos import hyperparams_pb2
from object_detection.utils import context_manager
slim = tf.contrib.slim
class KerasLayerHyperparams(object):
"""
A hyperparameter configuration object for Keras layers used in
Object Detection models.
"""
def __init__(self, hyperparams_config):
"""Builds keras hyperparameter config for layers based on the proto config.
It automatically converts from Slim layer hyperparameter configs to
Keras layer hyperparameters. Namely, it:
- Builds Keras initializers/regularizers instead of Slim ones
- sets weights_regularizer/initializer to kernel_regularizer/initializer
- converts batchnorm decay to momentum
- converts Slim l2 regularizer weights to the equivalent Keras l2 weights
Contains a hyperparameter configuration for ops that specifies kernel
initializer, kernel regularizer, activation. Also contains parameters for
batch norm operators based on the configuration.
Note that if the batch_norm parameters are not specified in the config
(i.e. left to default) then batch norm is excluded from the config.
Args:
hyperparams_config: hyperparams.proto object containing
hyperparameters.
Raises:
ValueError: if hyperparams_config is not of type hyperparams.Hyperparams.
"""
if not isinstance(hyperparams_config,
hyperparams_pb2.Hyperparams):
raise ValueError('hyperparams_config not of type '
'hyperparams_pb.Hyperparams.')
self._batch_norm_params = None
if hyperparams_config.HasField('batch_norm'):
self._batch_norm_params = _build_keras_batch_norm_params(
hyperparams_config.batch_norm)
self._activation_fn = _build_activation_fn(hyperparams_config.activation)
# TODO(kaftan): Unclear if these kwargs apply to separable & depthwise conv
# (Those might use depthwise_* instead of kernel_*)
# We should probably switch to using build_conv2d_layer and
# build_depthwise_conv2d_layer methods instead.
self._op_params = {
'kernel_regularizer': _build_keras_regularizer(
hyperparams_config.regularizer),
'kernel_initializer': _build_initializer(
hyperparams_config.initializer, build_for_keras=True),
'activation': _build_activation_fn(hyperparams_config.activation)
}
def use_batch_norm(self):
return self._batch_norm_params is not None
def batch_norm_params(self, **overrides):
"""Returns a dict containing batchnorm layer construction hyperparameters.
Optionally overrides values in the batchnorm hyperparam dict. Overrides
only apply to individual calls of this method, and do not affect
future calls.
Args:
**overrides: keyword arguments to override in the hyperparams dictionary
Returns: dict containing the layer construction keyword arguments, with
values overridden by the `overrides` keyword arguments.
"""
if self._batch_norm_params is None:
new_batch_norm_params = dict()
else:
new_batch_norm_params = self._batch_norm_params.copy()
new_batch_norm_params.update(overrides)
return new_batch_norm_params
def build_batch_norm(self, training=None, **overrides):
"""Returns a Batch Normalization layer with the appropriate hyperparams.
If the hyperparams are configured to not use batch normalization,
this will return a Keras Lambda layer that only applies tf.Identity,
without doing any normalization.
Optionally overrides values in the batch_norm hyperparam dict. Overrides
only apply to individual calls of this method, and do not affect
future calls.
Args:
training: if True, the normalization layer will normalize using the batch
statistics. If False, the normalization layer will be frozen and will
act as if it is being used for inference. If None, the layer
will look up the Keras learning phase at `call` time to decide what to
do.
**overrides: batch normalization construction args to override from the
batch_norm hyperparams dictionary.
Returns: Either a FreezableBatchNorm layer (if use_batch_norm() is True),
or a Keras Lambda layer that applies the identity (if use_batch_norm()
is False)
"""
if self.use_batch_norm():
return freezable_batch_norm.FreezableBatchNorm(
training=training,
**self.batch_norm_params(**overrides)
)
else:
return tf.keras.layers.Lambda(tf.identity)
def build_activation_layer(self, name='activation'):
"""Returns a Keras layer that applies the desired activation function.
Args:
name: The name to assign the Keras layer.
Returns: A Keras lambda layer that applies the activation function
specified in the hyperparam config, or applies the identity if the
activation function is None.
"""
if self._activation_fn:
return tf.keras.layers.Lambda(self._activation_fn, name=name)
else:
return tf.keras.layers.Lambda(tf.identity, name=name)
def params(self, include_activation=False, **overrides):
"""Returns a dict containing the layer construction hyperparameters to use.
Optionally overrides values in the returned dict. Overrides
only apply to individual calls of this method, and do not affect
future calls.
Args:
include_activation: If False, activation in the returned dictionary will
be set to `None`, and the activation must be applied via a separate
layer created by `build_activation_layer`. If True, `activation` in the
output param dictionary will be set to the activation function
specified in the hyperparams config.
**overrides: keyword arguments to override in the hyperparams dictionary.
Returns: dict containing the layer construction keyword arguments, with
values overridden by the `overrides` keyword arguments.
"""
new_params = self._op_params.copy()
new_params['activation'] = None
if include_activation:
new_params['activation'] = self._activation_fn
if self.use_batch_norm() and self.batch_norm_params()['center']:
new_params['use_bias'] = False
else:
new_params['use_bias'] = True
new_params.update(**overrides)
return new_params
def build(hyperparams_config, is_training):
"""Builds tf-slim arg_scope for convolution ops based on the config.
Returns an arg_scope to use for convolution ops containing weights
initializer, weights regularizer, activation function, batch norm function
and batch norm parameters based on the configuration.
Note that if no normalization parameters are specified in the config,
(i.e. left to default) then both batch norm and group norm are excluded
from the arg_scope.
The batch norm parameters are set for updates based on `is_training` argument
and conv_hyperparams_config.batch_norm.train parameter. During training, they
are updated only if batch_norm.train parameter is true. However, during eval,
no updates are made to the batch norm variables. In both cases, their current
values are used during forward pass.
Args:
hyperparams_config: hyperparams.proto object containing
hyperparameters.
is_training: Whether the network is in training mode.
Returns:
arg_scope_fn: A function to construct tf-slim arg_scope containing
hyperparameters for ops.
Raises:
ValueError: if hyperparams_config is not of type hyperparams.Hyperparams.
"""
if not isinstance(hyperparams_config,
hyperparams_pb2.Hyperparams):
raise ValueError('hyperparams_config not of type '
'hyperparams_pb.Hyperparams.')
normalizer_fn = None
batch_norm_params = None
if hyperparams_config.HasField('batch_norm'):
normalizer_fn = slim.batch_norm
batch_norm_params = _build_batch_norm_params(
hyperparams_config.batch_norm, is_training)
if hyperparams_config.HasField('group_norm'):
normalizer_fn = tf.contrib.layers.group_norm
affected_ops = [slim.conv2d, slim.separable_conv2d, slim.conv2d_transpose]
if hyperparams_config.HasField('op') and (
hyperparams_config.op == hyperparams_pb2.Hyperparams.FC):
affected_ops = [slim.fully_connected]
def scope_fn():
with (slim.arg_scope([slim.batch_norm], **batch_norm_params)
if batch_norm_params is not None else
context_manager.IdentityContextManager()):
with slim.arg_scope(
affected_ops,
weights_regularizer=_build_slim_regularizer(
hyperparams_config.regularizer),
weights_initializer=_build_initializer(
hyperparams_config.initializer),
activation_fn=_build_activation_fn(hyperparams_config.activation),
normalizer_fn=normalizer_fn) as sc:
return sc
return scope_fn
def _build_activation_fn(activation_fn):
"""Builds a callable activation from config.
Args:
activation_fn: hyperparams_pb2.Hyperparams.activation
Returns:
Callable activation function.
Raises:
ValueError: On unknown activation function.
"""
if activation_fn == hyperparams_pb2.Hyperparams.NONE:
return None
if activation_fn == hyperparams_pb2.Hyperparams.RELU:
return tf.nn.relu
if activation_fn == hyperparams_pb2.Hyperparams.RELU_6:
return tf.nn.relu6
raise ValueError('Unknown activation function: {}'.format(activation_fn))
def _build_slim_regularizer(regularizer):
"""Builds a tf-slim regularizer from config.
Args:
regularizer: hyperparams_pb2.Hyperparams.regularizer proto.
Returns:
tf-slim regularizer.
Raises:
ValueError: On unknown regularizer.
"""
regularizer_oneof = regularizer.WhichOneof('regularizer_oneof')
if regularizer_oneof == 'l1_regularizer':
return slim.l1_regularizer(scale=float(regularizer.l1_regularizer.weight))
if regularizer_oneof == 'l2_regularizer':
return slim.l2_regularizer(scale=float(regularizer.l2_regularizer.weight))
if regularizer_oneof is None:
return None
raise ValueError('Unknown regularizer function: {}'.format(regularizer_oneof))
def _build_keras_regularizer(regularizer):
"""Builds a keras regularizer from config.
Args:
regularizer: hyperparams_pb2.Hyperparams.regularizer proto.
Returns:
Keras regularizer.
Raises:
ValueError: On unknown regularizer.
"""
regularizer_oneof = regularizer.WhichOneof('regularizer_oneof')
if regularizer_oneof == 'l1_regularizer':
return tf.keras.regularizers.l1(float(regularizer.l1_regularizer.weight))
if regularizer_oneof == 'l2_regularizer':
# The Keras L2 regularizer weight differs from the Slim L2 regularizer
# weight by a factor of 2
return tf.keras.regularizers.l2(
float(regularizer.l2_regularizer.weight * 0.5))
raise ValueError('Unknown regularizer function: {}'.format(regularizer_oneof))
def _build_initializer(initializer, build_for_keras=False):
"""Build a tf initializer from config.
Args:
initializer: hyperparams_pb2.Hyperparams.regularizer proto.
build_for_keras: Whether the initializers should be built for Keras
operators. If false builds for Slim.
Returns:
tf initializer.
Raises:
ValueError: On unknown initializer.
"""
initializer_oneof = initializer.WhichOneof('initializer_oneof')
if initializer_oneof == 'truncated_normal_initializer':
return tf.truncated_normal_initializer(
mean=initializer.truncated_normal_initializer.mean,
stddev=initializer.truncated_normal_initializer.stddev)
if initializer_oneof == 'random_normal_initializer':
return tf.random_normal_initializer(
mean=initializer.random_normal_initializer.mean,
stddev=initializer.random_normal_initializer.stddev)
if initializer_oneof == 'variance_scaling_initializer':
enum_descriptor = (hyperparams_pb2.VarianceScalingInitializer.
DESCRIPTOR.enum_types_by_name['Mode'])
mode = enum_descriptor.values_by_number[initializer.
variance_scaling_initializer.
mode].name
if build_for_keras:
if initializer.variance_scaling_initializer.uniform:
return tf.variance_scaling_initializer(
scale=initializer.variance_scaling_initializer.factor,
mode=mode.lower(),
distribution='uniform')
else:
# In TF 1.9 release and earlier, the truncated_normal distribution was
# not supported correctly. So, in these earlier versions of tensorflow,
# the ValueError will be raised, and we manually truncate the
# distribution scale.
#
# It is insufficient to just set distribution to `normal` from the
# start, because the `normal` distribution in newer Tensorflow versions
# creates a truncated distribution, whereas it created untruncated
# distributions in older versions.
try:
return tf.variance_scaling_initializer(
scale=initializer.variance_scaling_initializer.factor,
mode=mode.lower(),
distribution='truncated_normal')
except ValueError:
truncate_constant = 0.87962566103423978
truncated_scale = initializer.variance_scaling_initializer.factor / (
truncate_constant * truncate_constant
)
return tf.variance_scaling_initializer(
scale=truncated_scale,
mode=mode.lower(),
distribution='normal')
else:
return slim.variance_scaling_initializer(
factor=initializer.variance_scaling_initializer.factor,
mode=mode,
uniform=initializer.variance_scaling_initializer.uniform)
raise ValueError('Unknown initializer function: {}'.format(
initializer_oneof))
def _build_batch_norm_params(batch_norm, is_training):
"""Build a dictionary of batch_norm params from config.
Args:
batch_norm: hyperparams_pb2.ConvHyperparams.batch_norm proto.
is_training: Whether the models is in training mode.
Returns:
A dictionary containing batch_norm parameters.
"""
batch_norm_params = {
'decay': batch_norm.decay,
'center': batch_norm.center,
'scale': batch_norm.scale,
'epsilon': batch_norm.epsilon,
# Remove is_training parameter from here and deprecate it in the proto
# once we refactor Faster RCNN models to set is_training through an outer
# arg_scope in the meta architecture.
'is_training': is_training and batch_norm.train,
}
return batch_norm_params
def _build_keras_batch_norm_params(batch_norm):
"""Build a dictionary of Keras BatchNormalization params from config.
Args:
batch_norm: hyperparams_pb2.ConvHyperparams.batch_norm proto.
Returns:
A dictionary containing Keras BatchNormalization parameters.
"""
# Note: Although decay is defined to be 1 - momentum in batch_norm,
# decay in the slim batch_norm layers was erroneously defined and is
# actually the same as momentum in the Keras batch_norm layers.
# For context, see: github.com/keras-team/keras/issues/6839
batch_norm_params = {
'momentum': batch_norm.decay,
'center': batch_norm.center,
'scale': batch_norm.scale,
'epsilon': batch_norm.epsilon,
}
return batch_norm_params