|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Utility functions for detection inference."""
|
|
from __future__ import division
|
|
|
|
import tensorflow as tf
|
|
|
|
from object_detection.core import standard_fields
|
|
|
|
|
|
def build_input(tfrecord_paths):
|
|
"""Builds the graph's input.
|
|
|
|
Args:
|
|
tfrecord_paths: List of paths to the input TFRecords
|
|
|
|
Returns:
|
|
serialized_example_tensor: The next serialized example. String scalar Tensor
|
|
image_tensor: The decoded image of the example. Uint8 tensor,
|
|
shape=[1, None, None,3]
|
|
"""
|
|
filename_queue = tf.train.string_input_producer(
|
|
tfrecord_paths, shuffle=False, num_epochs=1)
|
|
|
|
tf_record_reader = tf.TFRecordReader()
|
|
_, serialized_example_tensor = tf_record_reader.read(filename_queue)
|
|
features = tf.parse_single_example(
|
|
serialized_example_tensor,
|
|
features={
|
|
standard_fields.TfExampleFields.image_encoded:
|
|
tf.FixedLenFeature([], tf.string),
|
|
})
|
|
encoded_image = features[standard_fields.TfExampleFields.image_encoded]
|
|
image_tensor = tf.image.decode_image(encoded_image, channels=3)
|
|
image_tensor.set_shape([None, None, 3])
|
|
image_tensor = tf.expand_dims(image_tensor, 0)
|
|
|
|
return serialized_example_tensor, image_tensor
|
|
|
|
|
|
def build_inference_graph(image_tensor, inference_graph_path):
|
|
"""Loads the inference graph and connects it to the input image.
|
|
|
|
Args:
|
|
image_tensor: The input image. uint8 tensor, shape=[1, None, None, 3]
|
|
inference_graph_path: Path to the inference graph with embedded weights
|
|
|
|
Returns:
|
|
detected_boxes_tensor: Detected boxes. Float tensor,
|
|
shape=[num_detections, 4]
|
|
detected_scores_tensor: Detected scores. Float tensor,
|
|
shape=[num_detections]
|
|
detected_labels_tensor: Detected labels. Int64 tensor,
|
|
shape=[num_detections]
|
|
"""
|
|
with tf.gfile.Open(inference_graph_path, 'rb') as graph_def_file:
|
|
graph_content = graph_def_file.read()
|
|
graph_def = tf.GraphDef()
|
|
graph_def.MergeFromString(graph_content)
|
|
|
|
tf.import_graph_def(
|
|
graph_def, name='', input_map={'image_tensor': image_tensor})
|
|
|
|
g = tf.get_default_graph()
|
|
|
|
num_detections_tensor = tf.squeeze(
|
|
g.get_tensor_by_name('num_detections:0'), 0)
|
|
num_detections_tensor = tf.cast(num_detections_tensor, tf.int32)
|
|
|
|
detected_boxes_tensor = tf.squeeze(
|
|
g.get_tensor_by_name('detection_boxes:0'), 0)
|
|
detected_boxes_tensor = detected_boxes_tensor[:num_detections_tensor]
|
|
|
|
detected_scores_tensor = tf.squeeze(
|
|
g.get_tensor_by_name('detection_scores:0'), 0)
|
|
detected_scores_tensor = detected_scores_tensor[:num_detections_tensor]
|
|
|
|
detected_labels_tensor = tf.squeeze(
|
|
g.get_tensor_by_name('detection_classes:0'), 0)
|
|
detected_labels_tensor = tf.cast(detected_labels_tensor, tf.int64)
|
|
detected_labels_tensor = detected_labels_tensor[:num_detections_tensor]
|
|
|
|
return detected_boxes_tensor, detected_scores_tensor, detected_labels_tensor
|
|
|
|
|
|
def infer_detections_and_add_to_example(
|
|
serialized_example_tensor, detected_boxes_tensor, detected_scores_tensor,
|
|
detected_labels_tensor, discard_image_pixels):
|
|
"""Runs the supplied tensors and adds the inferred detections to the example.
|
|
|
|
Args:
|
|
serialized_example_tensor: Serialized TF example. Scalar string tensor
|
|
detected_boxes_tensor: Detected boxes. Float tensor,
|
|
shape=[num_detections, 4]
|
|
detected_scores_tensor: Detected scores. Float tensor,
|
|
shape=[num_detections]
|
|
detected_labels_tensor: Detected labels. Int64 tensor,
|
|
shape=[num_detections]
|
|
discard_image_pixels: If true, discards the image from the result
|
|
Returns:
|
|
The de-serialized TF example augmented with the inferred detections.
|
|
"""
|
|
tf_example = tf.train.Example()
|
|
(serialized_example, detected_boxes, detected_scores,
|
|
detected_classes) = tf.get_default_session().run([
|
|
serialized_example_tensor, detected_boxes_tensor, detected_scores_tensor,
|
|
detected_labels_tensor
|
|
])
|
|
detected_boxes = detected_boxes.T
|
|
|
|
tf_example.ParseFromString(serialized_example)
|
|
feature = tf_example.features.feature
|
|
feature[standard_fields.TfExampleFields.
|
|
detection_score].float_list.value[:] = detected_scores
|
|
feature[standard_fields.TfExampleFields.
|
|
detection_bbox_ymin].float_list.value[:] = detected_boxes[0]
|
|
feature[standard_fields.TfExampleFields.
|
|
detection_bbox_xmin].float_list.value[:] = detected_boxes[1]
|
|
feature[standard_fields.TfExampleFields.
|
|
detection_bbox_ymax].float_list.value[:] = detected_boxes[2]
|
|
feature[standard_fields.TfExampleFields.
|
|
detection_bbox_xmax].float_list.value[:] = detected_boxes[3]
|
|
feature[standard_fields.TfExampleFields.
|
|
detection_class_label].int64_list.value[:] = detected_classes
|
|
|
|
if discard_image_pixels:
|
|
del feature[standard_fields.TfExampleFields.image_encoded]
|
|
|
|
return tf_example
|