|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for object_detection.tflearn.inputs."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import functools
|
|
import os
|
|
from absl.testing import parameterized
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from object_detection import inputs
|
|
from object_detection.core import preprocessor
|
|
from object_detection.core import standard_fields as fields
|
|
from object_detection.utils import config_util
|
|
from object_detection.utils import test_case
|
|
|
|
FLAGS = tf.flags.FLAGS
|
|
|
|
|
|
def _get_configs_for_model(model_name):
|
|
"""Returns configurations for model."""
|
|
fname = os.path.join(tf.resource_loader.get_data_files_path(),
|
|
'samples/configs/' + model_name + '.config')
|
|
label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
|
|
'data/pet_label_map.pbtxt')
|
|
data_path = os.path.join(tf.resource_loader.get_data_files_path(),
|
|
'test_data/pets_examples.record')
|
|
configs = config_util.get_configs_from_pipeline_file(fname)
|
|
override_dict = {
|
|
'train_input_path': data_path,
|
|
'eval_input_path': data_path,
|
|
'label_map_path': label_map_path
|
|
}
|
|
return config_util.merge_external_params_with_configs(
|
|
configs, kwargs_dict=override_dict)
|
|
|
|
|
|
def _make_initializable_iterator(dataset):
|
|
"""Creates an iterator, and initializes tables.
|
|
|
|
Args:
|
|
dataset: A `tf.data.Dataset` object.
|
|
|
|
Returns:
|
|
A `tf.data.Iterator`.
|
|
"""
|
|
iterator = dataset.make_initializable_iterator()
|
|
tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
|
|
return iterator
|
|
|
|
|
|
class InputsTest(test_case.TestCase, parameterized.TestCase):
|
|
|
|
def test_faster_rcnn_resnet50_train_input(self):
|
|
"""Tests the training input function for FasterRcnnResnet50."""
|
|
configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
|
|
model_config = configs['model']
|
|
model_config.faster_rcnn.num_classes = 37
|
|
train_input_fn = inputs.create_train_input_fn(
|
|
configs['train_config'], configs['train_input_config'], model_config)
|
|
features, labels = _make_initializable_iterator(train_input_fn()).get_next()
|
|
|
|
self.assertAllEqual([1, None, None, 3],
|
|
features[fields.InputDataFields.image].shape.as_list())
|
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
|
|
self.assertAllEqual([1],
|
|
features[inputs.HASH_KEY].shape.as_list())
|
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
|
|
self.assertAllEqual(
|
|
[1, 100, 4],
|
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_boxes].dtype)
|
|
self.assertAllEqual(
|
|
[1, 100, model_config.faster_rcnn.num_classes],
|
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_classes].dtype)
|
|
self.assertAllEqual(
|
|
[1, 100],
|
|
labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_weights].dtype)
|
|
self.assertAllEqual(
|
|
[1, 100, model_config.faster_rcnn.num_classes],
|
|
labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
|
|
self.assertEqual(
|
|
tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_confidences].dtype)
|
|
|
|
def test_faster_rcnn_resnet50_train_input_with_additional_channels(self):
|
|
"""Tests the training input function for FasterRcnnResnet50."""
|
|
configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
|
|
model_config = configs['model']
|
|
configs['train_input_config'].num_additional_channels = 2
|
|
configs['train_config'].retain_original_images = True
|
|
model_config.faster_rcnn.num_classes = 37
|
|
train_input_fn = inputs.create_train_input_fn(
|
|
configs['train_config'], configs['train_input_config'], model_config)
|
|
features, labels = _make_initializable_iterator(train_input_fn()).get_next()
|
|
|
|
self.assertAllEqual([1, None, None, 5],
|
|
features[fields.InputDataFields.image].shape.as_list())
|
|
self.assertAllEqual(
|
|
[1, None, None, 3],
|
|
features[fields.InputDataFields.original_image].shape.as_list())
|
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
|
|
self.assertAllEqual([1],
|
|
features[inputs.HASH_KEY].shape.as_list())
|
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
|
|
self.assertAllEqual(
|
|
[1, 100, 4],
|
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_boxes].dtype)
|
|
self.assertAllEqual(
|
|
[1, 100, model_config.faster_rcnn.num_classes],
|
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_classes].dtype)
|
|
self.assertAllEqual(
|
|
[1, 100],
|
|
labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_weights].dtype)
|
|
self.assertAllEqual(
|
|
[1, 100, model_config.faster_rcnn.num_classes],
|
|
labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
|
|
self.assertEqual(
|
|
tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_confidences].dtype)
|
|
|
|
@parameterized.parameters(
|
|
{'eval_batch_size': 1},
|
|
{'eval_batch_size': 8}
|
|
)
|
|
def test_faster_rcnn_resnet50_eval_input(self, eval_batch_size=1):
|
|
"""Tests the eval input function for FasterRcnnResnet50."""
|
|
configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
|
|
model_config = configs['model']
|
|
model_config.faster_rcnn.num_classes = 37
|
|
eval_config = configs['eval_config']
|
|
eval_config.batch_size = eval_batch_size
|
|
eval_input_fn = inputs.create_eval_input_fn(
|
|
eval_config, configs['eval_input_configs'][0], model_config)
|
|
features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
|
|
self.assertAllEqual([eval_batch_size, None, None, 3],
|
|
features[fields.InputDataFields.image].shape.as_list())
|
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, None, None, 3],
|
|
features[fields.InputDataFields.original_image].shape.as_list())
|
|
self.assertEqual(tf.uint8,
|
|
features[fields.InputDataFields.original_image].dtype)
|
|
self.assertAllEqual([eval_batch_size],
|
|
features[inputs.HASH_KEY].shape.as_list())
|
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 100, 4],
|
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_boxes].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 100, model_config.faster_rcnn.num_classes],
|
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_classes].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 100],
|
|
labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
|
|
self.assertEqual(
|
|
tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_weights].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 100],
|
|
labels[fields.InputDataFields.groundtruth_area].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_area].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 100],
|
|
labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
|
|
self.assertEqual(
|
|
tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 100],
|
|
labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
|
|
self.assertEqual(
|
|
tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
|
|
|
|
def test_ssd_inceptionV2_train_input(self):
|
|
"""Tests the training input function for SSDInceptionV2."""
|
|
configs = _get_configs_for_model('ssd_inception_v2_pets')
|
|
model_config = configs['model']
|
|
model_config.ssd.num_classes = 37
|
|
batch_size = configs['train_config'].batch_size
|
|
train_input_fn = inputs.create_train_input_fn(
|
|
configs['train_config'], configs['train_input_config'], model_config)
|
|
features, labels = _make_initializable_iterator(train_input_fn()).get_next()
|
|
|
|
self.assertAllEqual([batch_size, 300, 300, 3],
|
|
features[fields.InputDataFields.image].shape.as_list())
|
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
|
|
self.assertAllEqual([batch_size],
|
|
features[inputs.HASH_KEY].shape.as_list())
|
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
|
|
self.assertAllEqual(
|
|
[batch_size],
|
|
labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list())
|
|
self.assertEqual(tf.int32,
|
|
labels[fields.InputDataFields.num_groundtruth_boxes].dtype)
|
|
self.assertAllEqual(
|
|
[batch_size, 100, 4],
|
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_boxes].dtype)
|
|
self.assertAllEqual(
|
|
[batch_size, 100, model_config.ssd.num_classes],
|
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_classes].dtype)
|
|
self.assertAllEqual(
|
|
[batch_size, 100],
|
|
labels[
|
|
fields.InputDataFields.groundtruth_weights].shape.as_list())
|
|
self.assertEqual(
|
|
tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_weights].dtype)
|
|
|
|
@parameterized.parameters(
|
|
{'eval_batch_size': 1},
|
|
{'eval_batch_size': 8}
|
|
)
|
|
def test_ssd_inceptionV2_eval_input(self, eval_batch_size=1):
|
|
"""Tests the eval input function for SSDInceptionV2."""
|
|
configs = _get_configs_for_model('ssd_inception_v2_pets')
|
|
model_config = configs['model']
|
|
model_config.ssd.num_classes = 37
|
|
eval_config = configs['eval_config']
|
|
eval_config.batch_size = eval_batch_size
|
|
eval_input_fn = inputs.create_eval_input_fn(
|
|
eval_config, configs['eval_input_configs'][0], model_config)
|
|
features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
|
|
self.assertAllEqual([eval_batch_size, 300, 300, 3],
|
|
features[fields.InputDataFields.image].shape.as_list())
|
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 300, 300, 3],
|
|
features[fields.InputDataFields.original_image].shape.as_list())
|
|
self.assertEqual(tf.uint8,
|
|
features[fields.InputDataFields.original_image].dtype)
|
|
self.assertAllEqual([eval_batch_size],
|
|
features[inputs.HASH_KEY].shape.as_list())
|
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 100, 4],
|
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_boxes].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 100, model_config.ssd.num_classes],
|
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_classes].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 100],
|
|
labels[
|
|
fields.InputDataFields.groundtruth_weights].shape.as_list())
|
|
self.assertEqual(
|
|
tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_weights].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 100],
|
|
labels[fields.InputDataFields.groundtruth_area].shape.as_list())
|
|
self.assertEqual(tf.float32,
|
|
labels[fields.InputDataFields.groundtruth_area].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 100],
|
|
labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
|
|
self.assertEqual(
|
|
tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
|
|
self.assertAllEqual(
|
|
[eval_batch_size, 100],
|
|
labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
|
|
self.assertEqual(
|
|
tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
|
|
|
|
def test_predict_input(self):
|
|
"""Tests the predict input function."""
|
|
configs = _get_configs_for_model('ssd_inception_v2_pets')
|
|
predict_input_fn = inputs.create_predict_input_fn(
|
|
model_config=configs['model'],
|
|
predict_input_config=configs['eval_input_configs'][0])
|
|
serving_input_receiver = predict_input_fn()
|
|
|
|
image = serving_input_receiver.features[fields.InputDataFields.image]
|
|
receiver_tensors = serving_input_receiver.receiver_tensors[
|
|
inputs.SERVING_FED_EXAMPLE_KEY]
|
|
self.assertEqual([1, 300, 300, 3], image.shape.as_list())
|
|
self.assertEqual(tf.float32, image.dtype)
|
|
self.assertEqual(tf.string, receiver_tensors.dtype)
|
|
|
|
def test_predict_input_with_additional_channels(self):
|
|
"""Tests the predict input function with additional channels."""
|
|
configs = _get_configs_for_model('ssd_inception_v2_pets')
|
|
configs['eval_input_configs'][0].num_additional_channels = 2
|
|
predict_input_fn = inputs.create_predict_input_fn(
|
|
model_config=configs['model'],
|
|
predict_input_config=configs['eval_input_configs'][0])
|
|
serving_input_receiver = predict_input_fn()
|
|
|
|
image = serving_input_receiver.features[fields.InputDataFields.image]
|
|
receiver_tensors = serving_input_receiver.receiver_tensors[
|
|
inputs.SERVING_FED_EXAMPLE_KEY]
|
|
# RGB + 2 additional channels = 5 channels.
|
|
self.assertEqual([1, 300, 300, 5], image.shape.as_list())
|
|
self.assertEqual(tf.float32, image.dtype)
|
|
self.assertEqual(tf.string, receiver_tensors.dtype)
|
|
|
|
def test_error_with_bad_train_config(self):
|
|
"""Tests that a TypeError is raised with improper train config."""
|
|
configs = _get_configs_for_model('ssd_inception_v2_pets')
|
|
configs['model'].ssd.num_classes = 37
|
|
train_input_fn = inputs.create_train_input_fn(
|
|
train_config=configs['eval_config'], # Expecting `TrainConfig`.
|
|
train_input_config=configs['train_input_config'],
|
|
model_config=configs['model'])
|
|
with self.assertRaises(TypeError):
|
|
train_input_fn()
|
|
|
|
def test_error_with_bad_train_input_config(self):
|
|
"""Tests that a TypeError is raised with improper train input config."""
|
|
configs = _get_configs_for_model('ssd_inception_v2_pets')
|
|
configs['model'].ssd.num_classes = 37
|
|
train_input_fn = inputs.create_train_input_fn(
|
|
train_config=configs['train_config'],
|
|
train_input_config=configs['model'], # Expecting `InputReader`.
|
|
model_config=configs['model'])
|
|
with self.assertRaises(TypeError):
|
|
train_input_fn()
|
|
|
|
def test_error_with_bad_train_model_config(self):
|
|
"""Tests that a TypeError is raised with improper train model config."""
|
|
configs = _get_configs_for_model('ssd_inception_v2_pets')
|
|
configs['model'].ssd.num_classes = 37
|
|
train_input_fn = inputs.create_train_input_fn(
|
|
train_config=configs['train_config'],
|
|
train_input_config=configs['train_input_config'],
|
|
model_config=configs['train_config']) # Expecting `DetectionModel`.
|
|
with self.assertRaises(TypeError):
|
|
train_input_fn()
|
|
|
|
def test_error_with_bad_eval_config(self):
|
|
"""Tests that a TypeError is raised with improper eval config."""
|
|
configs = _get_configs_for_model('ssd_inception_v2_pets')
|
|
configs['model'].ssd.num_classes = 37
|
|
eval_input_fn = inputs.create_eval_input_fn(
|
|
eval_config=configs['train_config'], # Expecting `EvalConfig`.
|
|
eval_input_config=configs['eval_input_configs'][0],
|
|
model_config=configs['model'])
|
|
with self.assertRaises(TypeError):
|
|
eval_input_fn()
|
|
|
|
def test_error_with_bad_eval_input_config(self):
|
|
"""Tests that a TypeError is raised with improper eval input config."""
|
|
configs = _get_configs_for_model('ssd_inception_v2_pets')
|
|
configs['model'].ssd.num_classes = 37
|
|
eval_input_fn = inputs.create_eval_input_fn(
|
|
eval_config=configs['eval_config'],
|
|
eval_input_config=configs['model'], # Expecting `InputReader`.
|
|
model_config=configs['model'])
|
|
with self.assertRaises(TypeError):
|
|
eval_input_fn()
|
|
|
|
def test_error_with_bad_eval_model_config(self):
|
|
"""Tests that a TypeError is raised with improper eval model config."""
|
|
configs = _get_configs_for_model('ssd_inception_v2_pets')
|
|
configs['model'].ssd.num_classes = 37
|
|
eval_input_fn = inputs.create_eval_input_fn(
|
|
eval_config=configs['eval_config'],
|
|
eval_input_config=configs['eval_input_configs'][0],
|
|
model_config=configs['eval_config']) # Expecting `DetectionModel`.
|
|
with self.assertRaises(TypeError):
|
|
eval_input_fn()
|
|
|
|
def test_output_equal_in_replace_empty_string_with_random_number(self):
|
|
string_placeholder = tf.placeholder(tf.string, shape=[])
|
|
replaced_string = inputs._replace_empty_string_with_random_number(
|
|
string_placeholder)
|
|
|
|
test_string = 'hello world'
|
|
feed_dict = {string_placeholder: test_string}
|
|
|
|
with self.test_session() as sess:
|
|
out_string = sess.run(replaced_string, feed_dict=feed_dict)
|
|
|
|
self.assertEqual(test_string, out_string)
|
|
|
|
def test_output_is_integer_in_replace_empty_string_with_random_number(self):
|
|
|
|
string_placeholder = tf.placeholder(tf.string, shape=[])
|
|
replaced_string = inputs._replace_empty_string_with_random_number(
|
|
string_placeholder)
|
|
|
|
empty_string = ''
|
|
feed_dict = {string_placeholder: empty_string}
|
|
|
|
tf.set_random_seed(0)
|
|
|
|
with self.test_session() as sess:
|
|
out_string = sess.run(replaced_string, feed_dict=feed_dict)
|
|
|
|
# Test whether out_string is a string which represents an integer.
|
|
int(out_string) # throws an error if out_string is not castable to int.
|
|
|
|
self.assertEqual(out_string, '2798129067578209328')
|
|
|
|
|
|
class DataAugmentationFnTest(test_case.TestCase):
|
|
|
|
def test_apply_image_and_box_augmentation(self):
|
|
data_augmentation_options = [
|
|
(preprocessor.resize_image, {
|
|
'new_height': 20,
|
|
'new_width': 20,
|
|
'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
|
|
}),
|
|
(preprocessor.scale_boxes_to_pixel_coordinates, {}),
|
|
]
|
|
data_augmentation_fn = functools.partial(
|
|
inputs.augment_input_data,
|
|
data_augmentation_options=data_augmentation_options)
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
|
|
fields.InputDataFields.groundtruth_boxes:
|
|
tf.constant(np.array([[.5, .5, 1., 1.]], np.float32))
|
|
}
|
|
augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
|
|
with self.test_session() as sess:
|
|
augmented_tensor_dict_out = sess.run(augmented_tensor_dict)
|
|
|
|
self.assertAllEqual(
|
|
augmented_tensor_dict_out[fields.InputDataFields.image].shape,
|
|
[20, 20, 3]
|
|
)
|
|
self.assertAllClose(
|
|
augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
|
|
[[10, 10, 20, 20]]
|
|
)
|
|
|
|
def test_apply_image_and_box_augmentation_with_scores(self):
|
|
data_augmentation_options = [
|
|
(preprocessor.resize_image, {
|
|
'new_height': 20,
|
|
'new_width': 20,
|
|
'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
|
|
}),
|
|
(preprocessor.scale_boxes_to_pixel_coordinates, {}),
|
|
]
|
|
data_augmentation_fn = functools.partial(
|
|
inputs.augment_input_data,
|
|
data_augmentation_options=data_augmentation_options)
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
|
|
fields.InputDataFields.groundtruth_boxes:
|
|
tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
|
|
fields.InputDataFields.groundtruth_classes:
|
|
tf.constant(np.array([1.0], np.float32)),
|
|
fields.InputDataFields.groundtruth_weights:
|
|
tf.constant(np.array([0.8], np.float32)),
|
|
}
|
|
augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
|
|
with self.test_session() as sess:
|
|
augmented_tensor_dict_out = sess.run(augmented_tensor_dict)
|
|
|
|
self.assertAllEqual(
|
|
augmented_tensor_dict_out[fields.InputDataFields.image].shape,
|
|
[20, 20, 3]
|
|
)
|
|
self.assertAllClose(
|
|
augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
|
|
[[10, 10, 20, 20]]
|
|
)
|
|
self.assertAllClose(
|
|
augmented_tensor_dict_out[fields.InputDataFields.groundtruth_classes],
|
|
[1.0]
|
|
)
|
|
self.assertAllClose(
|
|
augmented_tensor_dict_out[
|
|
fields.InputDataFields.groundtruth_weights],
|
|
[0.8]
|
|
)
|
|
|
|
def test_include_masks_in_data_augmentation(self):
|
|
data_augmentation_options = [
|
|
(preprocessor.resize_image, {
|
|
'new_height': 20,
|
|
'new_width': 20,
|
|
'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
|
|
})
|
|
]
|
|
data_augmentation_fn = functools.partial(
|
|
inputs.augment_input_data,
|
|
data_augmentation_options=data_augmentation_options)
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
|
|
fields.InputDataFields.groundtruth_instance_masks:
|
|
tf.constant(np.zeros([2, 10, 10], np.uint8))
|
|
}
|
|
augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
|
|
with self.test_session() as sess:
|
|
augmented_tensor_dict_out = sess.run(augmented_tensor_dict)
|
|
|
|
self.assertAllEqual(
|
|
augmented_tensor_dict_out[fields.InputDataFields.image].shape,
|
|
[20, 20, 3])
|
|
self.assertAllEqual(augmented_tensor_dict_out[
|
|
fields.InputDataFields.groundtruth_instance_masks].shape, [2, 20, 20])
|
|
|
|
def test_include_keypoints_in_data_augmentation(self):
|
|
data_augmentation_options = [
|
|
(preprocessor.resize_image, {
|
|
'new_height': 20,
|
|
'new_width': 20,
|
|
'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
|
|
}),
|
|
(preprocessor.scale_boxes_to_pixel_coordinates, {}),
|
|
]
|
|
data_augmentation_fn = functools.partial(
|
|
inputs.augment_input_data,
|
|
data_augmentation_options=data_augmentation_options)
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
|
|
fields.InputDataFields.groundtruth_boxes:
|
|
tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
|
|
fields.InputDataFields.groundtruth_keypoints:
|
|
tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32))
|
|
}
|
|
augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
|
|
with self.test_session() as sess:
|
|
augmented_tensor_dict_out = sess.run(augmented_tensor_dict)
|
|
|
|
self.assertAllEqual(
|
|
augmented_tensor_dict_out[fields.InputDataFields.image].shape,
|
|
[20, 20, 3]
|
|
)
|
|
self.assertAllClose(
|
|
augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
|
|
[[10, 10, 20, 20]]
|
|
)
|
|
self.assertAllClose(
|
|
augmented_tensor_dict_out[fields.InputDataFields.groundtruth_keypoints],
|
|
[[[10, 20], [10, 10]]]
|
|
)
|
|
|
|
|
|
def _fake_model_preprocessor_fn(image):
|
|
return (image, tf.expand_dims(tf.shape(image)[1:], axis=0))
|
|
|
|
|
|
def _fake_image_resizer_fn(image, mask):
|
|
return (image, mask, tf.shape(image))
|
|
|
|
|
|
class DataTransformationFnTest(test_case.TestCase):
|
|
|
|
def test_combine_additional_channels_if_present(self):
|
|
image = np.random.rand(4, 4, 3).astype(np.float32)
|
|
additional_channels = np.random.rand(4, 4, 2).astype(np.float32)
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(image),
|
|
fields.InputDataFields.image_additional_channels:
|
|
tf.constant(additional_channels),
|
|
fields.InputDataFields.groundtruth_classes:
|
|
tf.constant(np.array([1, 1], np.int32))
|
|
}
|
|
|
|
input_transformation_fn = functools.partial(
|
|
inputs.transform_input_data,
|
|
model_preprocess_fn=_fake_model_preprocessor_fn,
|
|
image_resizer_fn=_fake_image_resizer_fn,
|
|
num_classes=1)
|
|
with self.test_session() as sess:
|
|
transformed_inputs = sess.run(
|
|
input_transformation_fn(tensor_dict=tensor_dict))
|
|
self.assertAllEqual(transformed_inputs[fields.InputDataFields.image].dtype,
|
|
tf.float32)
|
|
self.assertAllEqual(transformed_inputs[fields.InputDataFields.image].shape,
|
|
[4, 4, 5])
|
|
self.assertAllClose(transformed_inputs[fields.InputDataFields.image],
|
|
np.concatenate((image, additional_channels), axis=2))
|
|
|
|
def test_returns_correct_class_label_encodings(self):
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
|
|
fields.InputDataFields.groundtruth_boxes:
|
|
tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
|
|
fields.InputDataFields.groundtruth_classes:
|
|
tf.constant(np.array([3, 1], np.int32))
|
|
}
|
|
num_classes = 3
|
|
input_transformation_fn = functools.partial(
|
|
inputs.transform_input_data,
|
|
model_preprocess_fn=_fake_model_preprocessor_fn,
|
|
image_resizer_fn=_fake_image_resizer_fn,
|
|
num_classes=num_classes)
|
|
with self.test_session() as sess:
|
|
transformed_inputs = sess.run(
|
|
input_transformation_fn(tensor_dict=tensor_dict))
|
|
|
|
self.assertAllClose(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_classes],
|
|
[[0, 0, 1], [1, 0, 0]])
|
|
self.assertAllClose(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_confidences],
|
|
[[0, 0, 1], [1, 0, 0]])
|
|
|
|
def test_returns_correct_labels_with_unrecognized_class(self):
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
|
|
fields.InputDataFields.groundtruth_boxes:
|
|
tf.constant(
|
|
np.array([[0, 0, 1, 1], [.2, .2, 4, 4], [.5, .5, 1, 1]],
|
|
np.float32)),
|
|
fields.InputDataFields.groundtruth_area:
|
|
tf.constant(np.array([.5, .4, .3])),
|
|
fields.InputDataFields.groundtruth_classes:
|
|
tf.constant(np.array([3, -1, 1], np.int32)),
|
|
fields.InputDataFields.groundtruth_keypoints:
|
|
tf.constant(
|
|
np.array([[[.1, .1]], [[.2, .2]], [[.5, .5]]],
|
|
np.float32)),
|
|
fields.InputDataFields.groundtruth_keypoint_visibilities:
|
|
tf.constant([True, False, True]),
|
|
fields.InputDataFields.groundtruth_instance_masks:
|
|
tf.constant(np.random.rand(3, 4, 4).astype(np.float32)),
|
|
fields.InputDataFields.groundtruth_is_crowd:
|
|
tf.constant([False, True, False]),
|
|
fields.InputDataFields.groundtruth_difficult:
|
|
tf.constant(np.array([0, 0, 1], np.int32))
|
|
}
|
|
|
|
num_classes = 3
|
|
input_transformation_fn = functools.partial(
|
|
inputs.transform_input_data,
|
|
model_preprocess_fn=_fake_model_preprocessor_fn,
|
|
image_resizer_fn=_fake_image_resizer_fn,
|
|
num_classes=num_classes)
|
|
with self.test_session() as sess:
|
|
transformed_inputs = sess.run(
|
|
input_transformation_fn(tensor_dict=tensor_dict))
|
|
|
|
self.assertAllClose(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_classes],
|
|
[[0, 0, 1], [1, 0, 0]])
|
|
self.assertAllEqual(
|
|
transformed_inputs[fields.InputDataFields.num_groundtruth_boxes], 2)
|
|
self.assertAllClose(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_area], [.5, .3])
|
|
self.assertAllEqual(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_confidences],
|
|
[[0, 0, 1], [1, 0, 0]])
|
|
self.assertAllClose(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_boxes],
|
|
[[0, 0, 1, 1], [.5, .5, 1, 1]])
|
|
self.assertAllClose(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
|
|
[[[.1, .1]], [[.5, .5]]])
|
|
self.assertAllEqual(
|
|
transformed_inputs[
|
|
fields.InputDataFields.groundtruth_keypoint_visibilities],
|
|
[True, True])
|
|
self.assertAllEqual(
|
|
transformed_inputs[
|
|
fields.InputDataFields.groundtruth_instance_masks].shape, [2, 4, 4])
|
|
self.assertAllEqual(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_is_crowd],
|
|
[False, False])
|
|
self.assertAllEqual(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_difficult],
|
|
[0, 1])
|
|
|
|
def test_returns_correct_merged_boxes(self):
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
|
|
fields.InputDataFields.groundtruth_boxes:
|
|
tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)),
|
|
fields.InputDataFields.groundtruth_classes:
|
|
tf.constant(np.array([3, 1], np.int32))
|
|
}
|
|
|
|
num_classes = 3
|
|
input_transformation_fn = functools.partial(
|
|
inputs.transform_input_data,
|
|
model_preprocess_fn=_fake_model_preprocessor_fn,
|
|
image_resizer_fn=_fake_image_resizer_fn,
|
|
num_classes=num_classes,
|
|
merge_multiple_boxes=True)
|
|
|
|
with self.test_session() as sess:
|
|
transformed_inputs = sess.run(
|
|
input_transformation_fn(tensor_dict=tensor_dict))
|
|
self.assertAllClose(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_boxes],
|
|
[[.5, .5, 1., 1.]])
|
|
self.assertAllClose(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_classes],
|
|
[[1, 0, 1]])
|
|
self.assertAllClose(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_confidences],
|
|
[[1, 0, 1]])
|
|
self.assertAllClose(
|
|
transformed_inputs[fields.InputDataFields.num_groundtruth_boxes],
|
|
1)
|
|
|
|
def test_returns_correct_groundtruth_confidences_when_input_present(self):
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
|
|
fields.InputDataFields.groundtruth_boxes:
|
|
tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
|
|
fields.InputDataFields.groundtruth_classes:
|
|
tf.constant(np.array([3, 1], np.int32)),
|
|
fields.InputDataFields.groundtruth_confidences:
|
|
tf.constant(np.array([1.0, -1.0], np.float32))
|
|
}
|
|
num_classes = 3
|
|
input_transformation_fn = functools.partial(
|
|
inputs.transform_input_data,
|
|
model_preprocess_fn=_fake_model_preprocessor_fn,
|
|
image_resizer_fn=_fake_image_resizer_fn,
|
|
num_classes=num_classes)
|
|
with self.test_session() as sess:
|
|
transformed_inputs = sess.run(
|
|
input_transformation_fn(tensor_dict=tensor_dict))
|
|
|
|
self.assertAllClose(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_classes],
|
|
[[0, 0, 1], [1, 0, 0]])
|
|
self.assertAllClose(
|
|
transformed_inputs[fields.InputDataFields.groundtruth_confidences],
|
|
[[0, 0, 1], [-1, 0, 0]])
|
|
|
|
def test_returns_resized_masks(self):
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
|
|
fields.InputDataFields.groundtruth_instance_masks:
|
|
tf.constant(np.random.rand(2, 4, 4).astype(np.float32)),
|
|
fields.InputDataFields.groundtruth_classes:
|
|
tf.constant(np.array([3, 1], np.int32)),
|
|
fields.InputDataFields.original_image_spatial_shape:
|
|
tf.constant(np.array([4, 4], np.int32))
|
|
}
|
|
|
|
def fake_image_resizer_fn(image, masks=None):
|
|
resized_image = tf.image.resize_images(image, [8, 8])
|
|
results = [resized_image]
|
|
if masks is not None:
|
|
resized_masks = tf.transpose(
|
|
tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]),
|
|
[2, 0, 1])
|
|
results.append(resized_masks)
|
|
results.append(tf.shape(resized_image))
|
|
return results
|
|
|
|
num_classes = 3
|
|
input_transformation_fn = functools.partial(
|
|
inputs.transform_input_data,
|
|
model_preprocess_fn=_fake_model_preprocessor_fn,
|
|
image_resizer_fn=fake_image_resizer_fn,
|
|
num_classes=num_classes,
|
|
retain_original_image=True)
|
|
with self.test_session() as sess:
|
|
transformed_inputs = sess.run(
|
|
input_transformation_fn(tensor_dict=tensor_dict))
|
|
self.assertAllEqual(transformed_inputs[
|
|
fields.InputDataFields.original_image].dtype, tf.uint8)
|
|
self.assertAllEqual(transformed_inputs[
|
|
fields.InputDataFields.original_image_spatial_shape], [4, 4])
|
|
self.assertAllEqual(transformed_inputs[
|
|
fields.InputDataFields.original_image].shape, [8, 8, 3])
|
|
self.assertAllEqual(transformed_inputs[
|
|
fields.InputDataFields.groundtruth_instance_masks].shape, [2, 8, 8])
|
|
|
|
def test_applies_model_preprocess_fn_to_image_tensor(self):
|
|
np_image = np.random.randint(256, size=(4, 4, 3))
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(np_image),
|
|
fields.InputDataFields.groundtruth_classes:
|
|
tf.constant(np.array([3, 1], np.int32))
|
|
}
|
|
|
|
def fake_model_preprocessor_fn(image):
|
|
return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0))
|
|
|
|
num_classes = 3
|
|
input_transformation_fn = functools.partial(
|
|
inputs.transform_input_data,
|
|
model_preprocess_fn=fake_model_preprocessor_fn,
|
|
image_resizer_fn=_fake_image_resizer_fn,
|
|
num_classes=num_classes)
|
|
|
|
with self.test_session() as sess:
|
|
transformed_inputs = sess.run(
|
|
input_transformation_fn(tensor_dict=tensor_dict))
|
|
self.assertAllClose(transformed_inputs[fields.InputDataFields.image],
|
|
np_image / 255.)
|
|
self.assertAllClose(transformed_inputs[fields.InputDataFields.
|
|
true_image_shape],
|
|
[4, 4, 3])
|
|
|
|
def test_applies_data_augmentation_fn_to_tensor_dict(self):
|
|
np_image = np.random.randint(256, size=(4, 4, 3))
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(np_image),
|
|
fields.InputDataFields.groundtruth_classes:
|
|
tf.constant(np.array([3, 1], np.int32))
|
|
}
|
|
|
|
def add_one_data_augmentation_fn(tensor_dict):
|
|
return {key: value + 1 for key, value in tensor_dict.items()}
|
|
|
|
num_classes = 4
|
|
input_transformation_fn = functools.partial(
|
|
inputs.transform_input_data,
|
|
model_preprocess_fn=_fake_model_preprocessor_fn,
|
|
image_resizer_fn=_fake_image_resizer_fn,
|
|
num_classes=num_classes,
|
|
data_augmentation_fn=add_one_data_augmentation_fn)
|
|
with self.test_session() as sess:
|
|
augmented_tensor_dict = sess.run(
|
|
input_transformation_fn(tensor_dict=tensor_dict))
|
|
|
|
self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image],
|
|
np_image + 1)
|
|
self.assertAllEqual(
|
|
augmented_tensor_dict[fields.InputDataFields.groundtruth_classes],
|
|
[[0, 0, 0, 1], [0, 1, 0, 0]])
|
|
|
|
def test_applies_data_augmentation_fn_before_model_preprocess_fn(self):
|
|
np_image = np.random.randint(256, size=(4, 4, 3))
|
|
tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.constant(np_image),
|
|
fields.InputDataFields.groundtruth_classes:
|
|
tf.constant(np.array([3, 1], np.int32))
|
|
}
|
|
|
|
def mul_two_model_preprocessor_fn(image):
|
|
return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0))
|
|
|
|
def add_five_to_image_data_augmentation_fn(tensor_dict):
|
|
tensor_dict[fields.InputDataFields.image] += 5
|
|
return tensor_dict
|
|
|
|
num_classes = 4
|
|
input_transformation_fn = functools.partial(
|
|
inputs.transform_input_data,
|
|
model_preprocess_fn=mul_two_model_preprocessor_fn,
|
|
image_resizer_fn=_fake_image_resizer_fn,
|
|
num_classes=num_classes,
|
|
data_augmentation_fn=add_five_to_image_data_augmentation_fn)
|
|
with self.test_session() as sess:
|
|
augmented_tensor_dict = sess.run(
|
|
input_transformation_fn(tensor_dict=tensor_dict))
|
|
|
|
self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image],
|
|
(np_image + 5) * 2)
|
|
|
|
|
|
class PadInputDataToStaticShapesFnTest(test_case.TestCase):
|
|
|
|
def test_pad_images_boxes_and_classes(self):
|
|
input_tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.placeholder(tf.float32, [None, None, 3]),
|
|
fields.InputDataFields.groundtruth_boxes:
|
|
tf.placeholder(tf.float32, [None, 4]),
|
|
fields.InputDataFields.groundtruth_classes:
|
|
tf.placeholder(tf.int32, [None, 3]),
|
|
fields.InputDataFields.true_image_shape:
|
|
tf.placeholder(tf.int32, [3]),
|
|
fields.InputDataFields.original_image_spatial_shape:
|
|
tf.placeholder(tf.int32, [2])
|
|
}
|
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
|
|
tensor_dict=input_tensor_dict,
|
|
max_num_boxes=3,
|
|
num_classes=3,
|
|
spatial_image_shape=[5, 6])
|
|
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
|
|
[5, 6, 3])
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.true_image_shape]
|
|
.shape.as_list(), [3])
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.original_image_spatial_shape]
|
|
.shape.as_list(), [2])
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
|
|
.shape.as_list(), [3, 4])
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
|
|
.shape.as_list(), [3, 3])
|
|
|
|
def test_clip_boxes_and_classes(self):
|
|
input_tensor_dict = {
|
|
fields.InputDataFields.groundtruth_boxes:
|
|
tf.placeholder(tf.float32, [None, 4]),
|
|
fields.InputDataFields.groundtruth_classes:
|
|
tf.placeholder(tf.int32, [None, 3]),
|
|
fields.InputDataFields.num_groundtruth_boxes:
|
|
tf.placeholder(tf.int32, [])
|
|
}
|
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
|
|
tensor_dict=input_tensor_dict,
|
|
max_num_boxes=3,
|
|
num_classes=3,
|
|
spatial_image_shape=[5, 6])
|
|
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
|
|
.shape.as_list(), [3, 4])
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
|
|
.shape.as_list(), [3, 3])
|
|
|
|
with self.test_session() as sess:
|
|
out_tensor_dict = sess.run(
|
|
padded_tensor_dict,
|
|
feed_dict={
|
|
input_tensor_dict[fields.InputDataFields.groundtruth_boxes]:
|
|
np.random.rand(5, 4),
|
|
input_tensor_dict[fields.InputDataFields.groundtruth_classes]:
|
|
np.random.rand(2, 3),
|
|
input_tensor_dict[fields.InputDataFields.num_groundtruth_boxes]:
|
|
5,
|
|
})
|
|
|
|
self.assertAllEqual(
|
|
out_tensor_dict[fields.InputDataFields.groundtruth_boxes].shape, [3, 4])
|
|
self.assertAllEqual(
|
|
out_tensor_dict[fields.InputDataFields.groundtruth_classes].shape,
|
|
[3, 3])
|
|
self.assertEqual(
|
|
out_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
|
|
3)
|
|
|
|
def test_do_not_pad_dynamic_images(self):
|
|
input_tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.placeholder(tf.float32, [None, None, 3]),
|
|
}
|
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
|
|
tensor_dict=input_tensor_dict,
|
|
max_num_boxes=3,
|
|
num_classes=3,
|
|
spatial_image_shape=[None, None])
|
|
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
|
|
[None, None, 3])
|
|
|
|
def test_images_and_additional_channels(self):
|
|
input_tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.placeholder(tf.float32, [None, None, 5]),
|
|
fields.InputDataFields.image_additional_channels:
|
|
tf.placeholder(tf.float32, [None, None, 2]),
|
|
}
|
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
|
|
tensor_dict=input_tensor_dict,
|
|
max_num_boxes=3,
|
|
num_classes=3,
|
|
spatial_image_shape=[5, 6])
|
|
|
|
# pad_input_data_to_static_shape assumes that image is already concatenated
|
|
# with additional channels.
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
|
|
[5, 6, 5])
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.image_additional_channels]
|
|
.shape.as_list(), [5, 6, 2])
|
|
|
|
def test_images_and_additional_channels_errors(self):
|
|
input_tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.placeholder(tf.float32, [None, None, 3]),
|
|
fields.InputDataFields.image_additional_channels:
|
|
tf.placeholder(tf.float32, [None, None, 2]),
|
|
fields.InputDataFields.original_image:
|
|
tf.placeholder(tf.float32, [None, None, 3]),
|
|
}
|
|
with self.assertRaises(ValueError):
|
|
_ = inputs.pad_input_data_to_static_shapes(
|
|
tensor_dict=input_tensor_dict,
|
|
max_num_boxes=3,
|
|
num_classes=3,
|
|
spatial_image_shape=[5, 6])
|
|
|
|
def test_gray_images(self):
|
|
input_tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.placeholder(tf.float32, [None, None, 1]),
|
|
}
|
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
|
|
tensor_dict=input_tensor_dict,
|
|
max_num_boxes=3,
|
|
num_classes=3,
|
|
spatial_image_shape=[5, 6])
|
|
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
|
|
[5, 6, 1])
|
|
|
|
def test_gray_images_and_additional_channels(self):
|
|
input_tensor_dict = {
|
|
fields.InputDataFields.image:
|
|
tf.placeholder(tf.float32, [None, None, 3]),
|
|
fields.InputDataFields.image_additional_channels:
|
|
tf.placeholder(tf.float32, [None, None, 2]),
|
|
}
|
|
# pad_input_data_to_static_shape assumes that image is already concatenated
|
|
# with additional channels.
|
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
|
|
tensor_dict=input_tensor_dict,
|
|
max_num_boxes=3,
|
|
num_classes=3,
|
|
spatial_image_shape=[5, 6])
|
|
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
|
|
[5, 6, 3])
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.image_additional_channels]
|
|
.shape.as_list(), [5, 6, 2])
|
|
|
|
def test_keypoints(self):
|
|
input_tensor_dict = {
|
|
fields.InputDataFields.groundtruth_keypoints:
|
|
tf.placeholder(tf.float32, [None, 16, 4]),
|
|
fields.InputDataFields.groundtruth_keypoint_visibilities:
|
|
tf.placeholder(tf.bool, [None, 16]),
|
|
}
|
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
|
|
tensor_dict=input_tensor_dict,
|
|
max_num_boxes=3,
|
|
num_classes=3,
|
|
spatial_image_shape=[5, 6])
|
|
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[fields.InputDataFields.groundtruth_keypoints]
|
|
.shape.as_list(), [3, 16, 4])
|
|
self.assertAllEqual(
|
|
padded_tensor_dict[
|
|
fields.InputDataFields.groundtruth_keypoint_visibilities]
|
|
.shape.as_list(), [3, 16])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|