You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

81 lines
3.3 KiB

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.core.bipartite_matcher."""
import tensorflow as tf
from object_detection.matchers import bipartite_matcher
class GreedyBipartiteMatcherTest(tf.test.TestCase):
def test_get_expected_matches_when_all_rows_are_valid(self):
similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]])
valid_rows = tf.ones([2], dtype=tf.bool)
expected_match_results = [-1, 1, 0]
matcher = bipartite_matcher.GreedyBipartiteMatcher()
match = matcher.match(similarity_matrix, valid_rows=valid_rows)
with self.test_session() as sess:
match_results_out = sess.run(match._match_results)
self.assertAllEqual(match_results_out, expected_match_results)
def test_get_expected_matches_with_all_rows_be_default(self):
similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]])
expected_match_results = [-1, 1, 0]
matcher = bipartite_matcher.GreedyBipartiteMatcher()
match = matcher.match(similarity_matrix)
with self.test_session() as sess:
match_results_out = sess.run(match._match_results)
self.assertAllEqual(match_results_out, expected_match_results)
def test_get_no_matches_with_zero_valid_rows(self):
similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]])
valid_rows = tf.zeros([2], dtype=tf.bool)
expected_match_results = [-1, -1, -1]
matcher = bipartite_matcher.GreedyBipartiteMatcher()
match = matcher.match(similarity_matrix, valid_rows)
with self.test_session() as sess:
match_results_out = sess.run(match._match_results)
self.assertAllEqual(match_results_out, expected_match_results)
def test_get_expected_matches_with_only_one_valid_row(self):
similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]])
valid_rows = tf.constant([True, False], dtype=tf.bool)
expected_match_results = [-1, -1, 0]
matcher = bipartite_matcher.GreedyBipartiteMatcher()
match = matcher.match(similarity_matrix, valid_rows)
with self.test_session() as sess:
match_results_out = sess.run(match._match_results)
self.assertAllEqual(match_results_out, expected_match_results)
def test_get_expected_matches_with_only_one_valid_row_at_bottom(self):
similarity_matrix = tf.constant([[0.15, 0.2, 0.3], [0.50, 0.1, 0.8]])
valid_rows = tf.constant([False, True], dtype=tf.bool)
expected_match_results = [-1, -1, 0]
matcher = bipartite_matcher.GreedyBipartiteMatcher()
match = matcher.match(similarity_matrix, valid_rows)
with self.test_session() as sess:
match_results_out = sess.run(match._match_results)
self.assertAllEqual(match_results_out, expected_match_results)
if __name__ == '__main__':
tf.test.main()