You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

115 lines
4.4 KiB

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Object detection calibration metrics.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.ops import metrics_impl
def _safe_div(numerator, denominator):
"""Divides two tensors element-wise, returning 0 if the denominator is <= 0.
Args:
numerator: A real `Tensor`.
denominator: A real `Tensor`, with dtype matching `numerator`.
Returns:
0 if `denominator` <= 0, else `numerator` / `denominator`
"""
t = tf.truediv(numerator, denominator)
zero = tf.zeros_like(t, dtype=denominator.dtype)
condition = tf.greater(denominator, zero)
zero = tf.cast(zero, t.dtype)
return tf.where(condition, t, zero)
def _ece_from_bins(bin_counts, bin_true_sum, bin_preds_sum, name):
"""Calculates Expected Calibration Error from accumulated statistics."""
bin_accuracies = _safe_div(bin_true_sum, bin_counts)
bin_confidences = _safe_div(bin_preds_sum, bin_counts)
abs_bin_errors = tf.abs(bin_accuracies - bin_confidences)
bin_weights = _safe_div(bin_counts, tf.reduce_sum(bin_counts))
return tf.reduce_sum(abs_bin_errors * bin_weights, name=name)
def expected_calibration_error(y_true, y_pred, nbins=20):
"""Calculates Expected Calibration Error (ECE).
ECE is a scalar summary statistic of calibration error. It is the
sample-weighted average of the difference between the predicted and true
probabilities of a positive detection across uniformly-spaced model
confidences [0, 1]. See referenced paper for a thorough explanation.
Reference:
Guo, et. al, "On Calibration of Modern Neural Networks"
Page 2, Expected Calibration Error (ECE).
https://arxiv.org/pdf/1706.04599.pdf
This function creates three local variables, `bin_counts`, `bin_true_sum`, and
`bin_preds_sum` that are used to compute ECE. For estimation of the metric
over a stream of data, the function creates an `update_op` operation that
updates these variables and returns the ECE.
Args:
y_true: 1-D tf.int64 Tensor of binarized ground truth, corresponding to each
prediction in y_pred.
y_pred: 1-D tf.float32 tensor of model confidence scores in range
[0.0, 1.0].
nbins: int specifying the number of uniformly-spaced bins into which y_pred
will be bucketed.
Returns:
value_op: A value metric op that returns ece.
update_op: An operation that increments the `bin_counts`, `bin_true_sum`,
and `bin_preds_sum` variables appropriately and whose value matches `ece`.
Raises:
InvalidArgumentError: if y_pred is not in [0.0, 1.0].
"""
bin_counts = metrics_impl.metric_variable(
[nbins], tf.float32, name='bin_counts')
bin_true_sum = metrics_impl.metric_variable(
[nbins], tf.float32, name='true_sum')
bin_preds_sum = metrics_impl.metric_variable(
[nbins], tf.float32, name='preds_sum')
with tf.control_dependencies([
tf.assert_greater_equal(y_pred, 0.0),
tf.assert_less_equal(y_pred, 1.0),
]):
bin_ids = tf.histogram_fixed_width_bins(y_pred, [0.0, 1.0], nbins=nbins)
with tf.control_dependencies([bin_ids]):
update_bin_counts_op = tf.assign_add(
bin_counts, tf.to_float(tf.bincount(bin_ids, minlength=nbins)))
update_bin_true_sum_op = tf.assign_add(
bin_true_sum,
tf.to_float(tf.bincount(bin_ids, weights=y_true, minlength=nbins)))
update_bin_preds_sum_op = tf.assign_add(
bin_preds_sum,
tf.to_float(tf.bincount(bin_ids, weights=y_pred, minlength=nbins)))
ece_update_op = _ece_from_bins(
update_bin_counts_op,
update_bin_true_sum_op,
update_bin_preds_sum_op,
name='update_op')
ece = _ece_from_bins(bin_counts, bin_true_sum, bin_preds_sum, name='value')
return ece, ece_update_op