|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for calibration_metrics."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from object_detection.metrics import calibration_metrics
|
|
|
|
|
|
class CalibrationLibTest(tf.test.TestCase):
|
|
|
|
@staticmethod
|
|
def _get_calibration_placeholders():
|
|
"""Returns TF placeholders for y_true and y_pred."""
|
|
return (tf.placeholder(tf.int64, shape=(None)),
|
|
tf.placeholder(tf.float32, shape=(None)))
|
|
|
|
def test_expected_calibration_error_all_bins_filled(self):
|
|
"""Test expected calibration error when all bins contain predictions."""
|
|
y_true, y_pred = self._get_calibration_placeholders()
|
|
expected_ece_op, update_op = calibration_metrics.expected_calibration_error(
|
|
y_true, y_pred, nbins=2)
|
|
with self.test_session() as sess:
|
|
metrics_vars = tf.get_collection(tf.GraphKeys.METRIC_VARIABLES)
|
|
sess.run(tf.variables_initializer(var_list=metrics_vars))
|
|
# Bin calibration errors (|confidence - accuracy| * bin_weight):
|
|
# - [0,0.5): |0.2 - 0.333| * (3/5) = 0.08
|
|
# - [0.5, 1]: |0.75 - 0.5| * (2/5) = 0.1
|
|
sess.run(
|
|
update_op,
|
|
feed_dict={
|
|
y_pred: np.array([0., 0.2, 0.4, 0.5, 1.0]),
|
|
y_true: np.array([0, 0, 1, 0, 1])
|
|
})
|
|
actual_ece = 0.08 + 0.1
|
|
expected_ece = sess.run(expected_ece_op)
|
|
self.assertAlmostEqual(actual_ece, expected_ece)
|
|
|
|
def test_expected_calibration_error_all_bins_not_filled(self):
|
|
"""Test expected calibration error when no predictions for one bin."""
|
|
y_true, y_pred = self._get_calibration_placeholders()
|
|
expected_ece_op, update_op = calibration_metrics.expected_calibration_error(
|
|
y_true, y_pred, nbins=2)
|
|
with self.test_session() as sess:
|
|
metrics_vars = tf.get_collection(tf.GraphKeys.METRIC_VARIABLES)
|
|
sess.run(tf.variables_initializer(var_list=metrics_vars))
|
|
# Bin calibration errors (|confidence - accuracy| * bin_weight):
|
|
# - [0,0.5): |0.2 - 0.333| * (3/5) = 0.08
|
|
# - [0.5, 1]: |0.75 - 0.5| * (2/5) = 0.1
|
|
sess.run(
|
|
update_op,
|
|
feed_dict={
|
|
y_pred: np.array([0., 0.2, 0.4]),
|
|
y_true: np.array([0, 0, 1])
|
|
})
|
|
actual_ece = np.abs(0.2 - (1 / 3.))
|
|
expected_ece = sess.run(expected_ece_op)
|
|
self.assertAlmostEqual(actual_ece, expected_ece)
|
|
|
|
def test_expected_calibration_error_with_multiple_data_streams(self):
|
|
"""Test expected calibration error when multiple data batches provided."""
|
|
y_true, y_pred = self._get_calibration_placeholders()
|
|
expected_ece_op, update_op = calibration_metrics.expected_calibration_error(
|
|
y_true, y_pred, nbins=2)
|
|
with self.test_session() as sess:
|
|
metrics_vars = tf.get_collection(tf.GraphKeys.METRIC_VARIABLES)
|
|
sess.run(tf.variables_initializer(var_list=metrics_vars))
|
|
# Identical data to test_expected_calibration_error_all_bins_filled,
|
|
# except split over three batches.
|
|
sess.run(
|
|
update_op,
|
|
feed_dict={
|
|
y_pred: np.array([0., 0.2]),
|
|
y_true: np.array([0, 0])
|
|
})
|
|
sess.run(
|
|
update_op,
|
|
feed_dict={
|
|
y_pred: np.array([0.4, 0.5]),
|
|
y_true: np.array([1, 0])
|
|
})
|
|
sess.run(
|
|
update_op, feed_dict={
|
|
y_pred: np.array([1.0]),
|
|
y_true: np.array([1])
|
|
})
|
|
actual_ece = 0.08 + 0.1
|
|
expected_ece = sess.run(expected_ece_op)
|
|
self.assertAlmostEqual(actual_ece, expected_ece)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|