You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

850 lines
37 KiB

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrappers for third party pycocotools to be used within object_detection.
Note that nothing in this file is tensorflow related and thus cannot
be called directly as a slim metric, for example.
TODO(jonathanhuang): wrap as a slim metric in metrics.py
Usage example: given a set of images with ids in the list image_ids
and corresponding lists of numpy arrays encoding groundtruth (boxes and classes)
and detections (boxes, scores and classes), where elements of each list
correspond to detections/annotations of a single image,
then evaluation (in multi-class mode) can be invoked as follows:
groundtruth_dict = coco_tools.ExportGroundtruthToCOCO(
image_ids, groundtruth_boxes_list, groundtruth_classes_list,
max_num_classes, output_path=None)
detections_list = coco_tools.ExportDetectionsToCOCO(
image_ids, detection_boxes_list, detection_scores_list,
detection_classes_list, output_path=None)
groundtruth = coco_tools.COCOWrapper(groundtruth_dict)
detections = groundtruth.LoadAnnotations(detections_list)
evaluator = coco_tools.COCOEvalWrapper(groundtruth, detections,
agnostic_mode=False)
metrics = evaluator.ComputeMetrics()
"""
from collections import OrderedDict
import copy
import time
import numpy as np
from pycocotools import coco
from pycocotools import cocoeval
from pycocotools import mask
import tensorflow as tf
from object_detection.utils import json_utils
class COCOWrapper(coco.COCO):
"""Wrapper for the pycocotools COCO class."""
def __init__(self, dataset, detection_type='bbox'):
"""COCOWrapper constructor.
See http://mscoco.org/dataset/#format for a description of the format.
By default, the coco.COCO class constructor reads from a JSON file.
This function duplicates the same behavior but loads from a dictionary,
allowing us to perform evaluation without writing to external storage.
Args:
dataset: a dictionary holding bounding box annotations in the COCO format.
detection_type: type of detections being wrapped. Can be one of ['bbox',
'segmentation']
Raises:
ValueError: if detection_type is unsupported.
"""
supported_detection_types = ['bbox', 'segmentation']
if detection_type not in supported_detection_types:
raise ValueError('Unsupported detection type: {}. '
'Supported values are: {}'.format(
detection_type, supported_detection_types))
self._detection_type = detection_type
coco.COCO.__init__(self)
self.dataset = dataset
self.createIndex()
def LoadAnnotations(self, annotations):
"""Load annotations dictionary into COCO datastructure.
See http://mscoco.org/dataset/#format for a description of the annotations
format. As above, this function replicates the default behavior of the API
but does not require writing to external storage.
Args:
annotations: python list holding object detection results where each
detection is encoded as a dict with required keys ['image_id',
'category_id', 'score'] and one of ['bbox', 'segmentation'] based on
`detection_type`.
Returns:
a coco.COCO datastructure holding object detection annotations results
Raises:
ValueError: if annotations is not a list
ValueError: if annotations do not correspond to the images contained
in self.
"""
results = coco.COCO()
results.dataset['images'] = [img for img in self.dataset['images']]
tf.logging.info('Loading and preparing annotation results...')
tic = time.time()
if not isinstance(annotations, list):
raise ValueError('annotations is not a list of objects')
annotation_img_ids = [ann['image_id'] for ann in annotations]
if (set(annotation_img_ids) != (set(annotation_img_ids)
& set(self.getImgIds()))):
raise ValueError('Results do not correspond to current coco set')
results.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
if self._detection_type == 'bbox':
for idx, ann in enumerate(annotations):
bb = ann['bbox']
ann['area'] = bb[2] * bb[3]
ann['id'] = idx + 1
ann['iscrowd'] = 0
elif self._detection_type == 'segmentation':
for idx, ann in enumerate(annotations):
ann['area'] = mask.area(ann['segmentation'])
ann['bbox'] = mask.toBbox(ann['segmentation'])
ann['id'] = idx + 1
ann['iscrowd'] = 0
tf.logging.info('DONE (t=%0.2fs)', (time.time() - tic))
results.dataset['annotations'] = annotations
results.createIndex()
return results
class COCOEvalWrapper(cocoeval.COCOeval):
"""Wrapper for the pycocotools COCOeval class.
To evaluate, create two objects (groundtruth_dict and detections_list)
using the conventions listed at http://mscoco.org/dataset/#format.
Then call evaluation as follows:
groundtruth = coco_tools.COCOWrapper(groundtruth_dict)
detections = groundtruth.LoadAnnotations(detections_list)
evaluator = coco_tools.COCOEvalWrapper(groundtruth, detections,
agnostic_mode=False)
metrics = evaluator.ComputeMetrics()
"""
def __init__(self, groundtruth=None, detections=None, agnostic_mode=False,
iou_type='bbox'):
"""COCOEvalWrapper constructor.
Note that for the area-based metrics to be meaningful, detection and
groundtruth boxes must be in image coordinates measured in pixels.
Args:
groundtruth: a coco.COCO (or coco_tools.COCOWrapper) object holding
groundtruth annotations
detections: a coco.COCO (or coco_tools.COCOWrapper) object holding
detections
agnostic_mode: boolean (default: False). If True, evaluation ignores
class labels, treating all detections as proposals.
iou_type: IOU type to use for evaluation. Supports `bbox` or `segm`.
"""
cocoeval.COCOeval.__init__(self, groundtruth, detections,
iouType=iou_type)
if agnostic_mode:
self.params.useCats = 0
def GetCategory(self, category_id):
"""Fetches dictionary holding category information given category id.
Args:
category_id: integer id
Returns:
dictionary holding 'id', 'name'.
"""
return self.cocoGt.cats[category_id]
def GetAgnosticMode(self):
"""Returns true if COCO Eval is configured to evaluate in agnostic mode."""
return self.params.useCats == 0
def GetCategoryIdList(self):
"""Returns list of valid category ids."""
return self.params.catIds
def ComputeMetrics(self,
include_metrics_per_category=False,
all_metrics_per_category=False):
"""Computes detection metrics.
Args:
include_metrics_per_category: If True, will include metrics per category.
all_metrics_per_category: If true, include all the summery metrics for
each category in per_category_ap. Be careful with setting it to true if
you have more than handful of categories, because it will pollute
your mldash.
Returns:
1. summary_metrics: a dictionary holding:
'Precision/mAP': mean average precision over classes averaged over IOU
thresholds ranging from .5 to .95 with .05 increments
'Precision/mAP@.50IOU': mean average precision at 50% IOU
'Precision/mAP@.75IOU': mean average precision at 75% IOU
'Precision/mAP (small)': mean average precision for small objects
(area < 32^2 pixels)
'Precision/mAP (medium)': mean average precision for medium sized
objects (32^2 pixels < area < 96^2 pixels)
'Precision/mAP (large)': mean average precision for large objects
(96^2 pixels < area < 10000^2 pixels)
'Recall/AR@1': average recall with 1 detection
'Recall/AR@10': average recall with 10 detections
'Recall/AR@100': average recall with 100 detections
'Recall/AR@100 (small)': average recall for small objects with 100
detections
'Recall/AR@100 (medium)': average recall for medium objects with 100
detections
'Recall/AR@100 (large)': average recall for large objects with 100
detections
2. per_category_ap: a dictionary holding category specific results with
keys of the form: 'Precision mAP ByCategory/category'
(without the supercategory part if no supercategories exist).
For backward compatibility 'PerformanceByCategory' is included in the
output regardless of all_metrics_per_category.
If evaluating class-agnostic mode, per_category_ap is an empty
dictionary.
Raises:
ValueError: If category_stats does not exist.
"""
self.evaluate()
self.accumulate()
self.summarize()
summary_metrics = OrderedDict([
('Precision/mAP', self.stats[0]),
('Precision/mAP@.50IOU', self.stats[1]),
('Precision/mAP@.75IOU', self.stats[2]),
('Precision/mAP (small)', self.stats[3]),
('Precision/mAP (medium)', self.stats[4]),
('Precision/mAP (large)', self.stats[5]),
('Recall/AR@1', self.stats[6]),
('Recall/AR@10', self.stats[7]),
('Recall/AR@100', self.stats[8]),
('Recall/AR@100 (small)', self.stats[9]),
('Recall/AR@100 (medium)', self.stats[10]),
('Recall/AR@100 (large)', self.stats[11])
])
if not include_metrics_per_category:
return summary_metrics, {}
if not hasattr(self, 'category_stats'):
raise ValueError('Category stats do not exist')
per_category_ap = OrderedDict([])
if self.GetAgnosticMode():
return summary_metrics, per_category_ap
for category_index, category_id in enumerate(self.GetCategoryIdList()):
category = self.GetCategory(category_id)['name']
# Kept for backward compatilbility
per_category_ap['PerformanceByCategory/mAP/{}'.format(
category)] = self.category_stats[0][category_index]
if all_metrics_per_category:
per_category_ap['Precision mAP ByCategory/{}'.format(
category)] = self.category_stats[0][category_index]
per_category_ap['Precision mAP@.50IOU ByCategory/{}'.format(
category)] = self.category_stats[1][category_index]
per_category_ap['Precision mAP@.75IOU ByCategory/{}'.format(
category)] = self.category_stats[2][category_index]
per_category_ap['Precision mAP (small) ByCategory/{}'.format(
category)] = self.category_stats[3][category_index]
per_category_ap['Precision mAP (medium) ByCategory/{}'.format(
category)] = self.category_stats[4][category_index]
per_category_ap['Precision mAP (large) ByCategory/{}'.format(
category)] = self.category_stats[5][category_index]
per_category_ap['Recall AR@1 ByCategory/{}'.format(
category)] = self.category_stats[6][category_index]
per_category_ap['Recall AR@10 ByCategory/{}'.format(
category)] = self.category_stats[7][category_index]
per_category_ap['Recall AR@100 ByCategory/{}'.format(
category)] = self.category_stats[8][category_index]
per_category_ap['Recall AR@100 (small) ByCategory/{}'.format(
category)] = self.category_stats[9][category_index]
per_category_ap['Recall AR@100 (medium) ByCategory/{}'.format(
category)] = self.category_stats[10][category_index]
per_category_ap['Recall AR@100 (large) ByCategory/{}'.format(
category)] = self.category_stats[11][category_index]
return summary_metrics, per_category_ap
def _ConvertBoxToCOCOFormat(box):
"""Converts a box in [ymin, xmin, ymax, xmax] format to COCO format.
This is a utility function for converting from our internal
[ymin, xmin, ymax, xmax] convention to the convention used by the COCO API
i.e., [xmin, ymin, width, height].
Args:
box: a [ymin, xmin, ymax, xmax] numpy array
Returns:
a list of floats representing [xmin, ymin, width, height]
"""
return [float(box[1]), float(box[0]), float(box[3] - box[1]),
float(box[2] - box[0])]
def _RleCompress(masks):
"""Compresses mask using Run-length encoding provided by pycocotools.
Args:
masks: uint8 numpy array of shape [mask_height, mask_width] with values in
{0, 1}.
Returns:
A pycocotools Run-length encoding of the mask.
"""
return mask.encode(np.asfortranarray(masks))
def ExportSingleImageGroundtruthToCoco(image_id,
next_annotation_id,
category_id_set,
groundtruth_boxes,
groundtruth_classes,
groundtruth_masks=None,
groundtruth_is_crowd=None):
"""Export groundtruth of a single image to COCO format.
This function converts groundtruth detection annotations represented as numpy
arrays to dictionaries that can be ingested by the COCO evaluation API. Note
that the image_ids provided here must match the ones given to
ExportSingleImageDetectionsToCoco. We assume that boxes and classes are in
correspondence - that is: groundtruth_boxes[i, :], and
groundtruth_classes[i] are associated with the same groundtruth annotation.
In the exported result, "area" fields are always set to the area of the
groundtruth bounding box.
Args:
image_id: a unique image identifier either of type integer or string.
next_annotation_id: integer specifying the first id to use for the
groundtruth annotations. All annotations are assigned a continuous integer
id starting from this value.
category_id_set: A set of valid class ids. Groundtruth with classes not in
category_id_set are dropped.
groundtruth_boxes: numpy array (float32) with shape [num_gt_boxes, 4]
groundtruth_classes: numpy array (int) with shape [num_gt_boxes]
groundtruth_masks: optional uint8 numpy array of shape [num_detections,
image_height, image_width] containing detection_masks.
groundtruth_is_crowd: optional numpy array (int) with shape [num_gt_boxes]
indicating whether groundtruth boxes are crowd.
Returns:
a list of groundtruth annotations for a single image in the COCO format.
Raises:
ValueError: if (1) groundtruth_boxes and groundtruth_classes do not have the
right lengths or (2) if each of the elements inside these lists do not
have the correct shapes or (3) if image_ids are not integers
"""
if len(groundtruth_classes.shape) != 1:
raise ValueError('groundtruth_classes is '
'expected to be of rank 1.')
if len(groundtruth_boxes.shape) != 2:
raise ValueError('groundtruth_boxes is expected to be of '
'rank 2.')
if groundtruth_boxes.shape[1] != 4:
raise ValueError('groundtruth_boxes should have '
'shape[1] == 4.')
num_boxes = groundtruth_classes.shape[0]
if num_boxes != groundtruth_boxes.shape[0]:
raise ValueError('Corresponding entries in groundtruth_classes, '
'and groundtruth_boxes should have '
'compatible shapes (i.e., agree on the 0th dimension).'
'Classes shape: %d. Boxes shape: %d. Image ID: %s' % (
groundtruth_classes.shape[0],
groundtruth_boxes.shape[0], image_id))
has_is_crowd = groundtruth_is_crowd is not None
if has_is_crowd and len(groundtruth_is_crowd.shape) != 1:
raise ValueError('groundtruth_is_crowd is expected to be of rank 1.')
groundtruth_list = []
for i in range(num_boxes):
if groundtruth_classes[i] in category_id_set:
iscrowd = groundtruth_is_crowd[i] if has_is_crowd else 0
export_dict = {
'id':
next_annotation_id + i,
'image_id':
image_id,
'category_id':
int(groundtruth_classes[i]),
'bbox':
list(_ConvertBoxToCOCOFormat(groundtruth_boxes[i, :])),
'area':
float((groundtruth_boxes[i, 2] - groundtruth_boxes[i, 0]) *
(groundtruth_boxes[i, 3] - groundtruth_boxes[i, 1])),
'iscrowd':
iscrowd
}
if groundtruth_masks is not None:
export_dict['segmentation'] = _RleCompress(groundtruth_masks[i])
groundtruth_list.append(export_dict)
return groundtruth_list
def ExportGroundtruthToCOCO(image_ids,
groundtruth_boxes,
groundtruth_classes,
categories,
output_path=None):
"""Export groundtruth detection annotations in numpy arrays to COCO API.
This function converts a set of groundtruth detection annotations represented
as numpy arrays to dictionaries that can be ingested by the COCO API.
Inputs to this function are three lists: image ids for each groundtruth image,
groundtruth boxes for each image and groundtruth classes respectively.
Note that the image_ids provided here must match the ones given to the
ExportDetectionsToCOCO function in order for evaluation to work properly.
We assume that for each image, boxes, scores and classes are in
correspondence --- that is: image_id[i], groundtruth_boxes[i, :] and
groundtruth_classes[i] are associated with the same groundtruth annotation.
In the exported result, "area" fields are always set to the area of the
groundtruth bounding box and "iscrowd" fields are always set to 0.
TODO(jonathanhuang): pass in "iscrowd" array for evaluating on COCO dataset.
Args:
image_ids: a list of unique image identifier either of type integer or
string.
groundtruth_boxes: list of numpy arrays with shape [num_gt_boxes, 4]
(note that num_gt_boxes can be different for each entry in the list)
groundtruth_classes: list of numpy arrays (int) with shape [num_gt_boxes]
(note that num_gt_boxes can be different for each entry in the list)
categories: a list of dictionaries representing all possible categories.
Each dict in this list has the following keys:
'id': (required) an integer id uniquely identifying this category
'name': (required) string representing category name
e.g., 'cat', 'dog', 'pizza'
'supercategory': (optional) string representing the supercategory
e.g., 'animal', 'vehicle', 'food', etc
output_path: (optional) path for exporting result to JSON
Returns:
dictionary that can be read by COCO API
Raises:
ValueError: if (1) groundtruth_boxes and groundtruth_classes do not have the
right lengths or (2) if each of the elements inside these lists do not
have the correct shapes or (3) if image_ids are not integers
"""
category_id_set = set([cat['id'] for cat in categories])
groundtruth_export_list = []
image_export_list = []
if not len(image_ids) == len(groundtruth_boxes) == len(groundtruth_classes):
raise ValueError('Input lists must have the same length')
# For reasons internal to the COCO API, it is important that annotation ids
# are not equal to zero; we thus start counting from 1.
annotation_id = 1
for image_id, boxes, classes in zip(image_ids, groundtruth_boxes,
groundtruth_classes):
image_export_list.append({'id': image_id})
groundtruth_export_list.extend(ExportSingleImageGroundtruthToCoco(
image_id,
annotation_id,
category_id_set,
boxes,
classes))
num_boxes = classes.shape[0]
annotation_id += num_boxes
groundtruth_dict = {
'annotations': groundtruth_export_list,
'images': image_export_list,
'categories': categories
}
if output_path:
with tf.gfile.GFile(output_path, 'w') as fid:
json_utils.Dump(groundtruth_dict, fid, float_digits=4, indent=2)
return groundtruth_dict
def ExportSingleImageDetectionBoxesToCoco(image_id,
category_id_set,
detection_boxes,
detection_scores,
detection_classes):
"""Export detections of a single image to COCO format.
This function converts detections represented as numpy arrays to dictionaries
that can be ingested by the COCO evaluation API. Note that the image_ids
provided here must match the ones given to the
ExporSingleImageDetectionBoxesToCoco. We assume that boxes, and classes are in
correspondence - that is: boxes[i, :], and classes[i]
are associated with the same groundtruth annotation.
Args:
image_id: unique image identifier either of type integer or string.
category_id_set: A set of valid class ids. Detections with classes not in
category_id_set are dropped.
detection_boxes: float numpy array of shape [num_detections, 4] containing
detection boxes.
detection_scores: float numpy array of shape [num_detections] containing
scored for the detection boxes.
detection_classes: integer numpy array of shape [num_detections] containing
the classes for detection boxes.
Returns:
a list of detection annotations for a single image in the COCO format.
Raises:
ValueError: if (1) detection_boxes, detection_scores and detection_classes
do not have the right lengths or (2) if each of the elements inside these
lists do not have the correct shapes or (3) if image_ids are not integers.
"""
if len(detection_classes.shape) != 1 or len(detection_scores.shape) != 1:
raise ValueError('All entries in detection_classes and detection_scores'
'expected to be of rank 1.')
if len(detection_boxes.shape) != 2:
raise ValueError('All entries in detection_boxes expected to be of '
'rank 2.')
if detection_boxes.shape[1] != 4:
raise ValueError('All entries in detection_boxes should have '
'shape[1] == 4.')
num_boxes = detection_classes.shape[0]
if not num_boxes == detection_boxes.shape[0] == detection_scores.shape[0]:
raise ValueError('Corresponding entries in detection_classes, '
'detection_scores and detection_boxes should have '
'compatible shapes (i.e., agree on the 0th dimension). '
'Classes shape: %d. Boxes shape: %d. '
'Scores shape: %d' % (
detection_classes.shape[0], detection_boxes.shape[0],
detection_scores.shape[0]
))
detections_list = []
for i in range(num_boxes):
if detection_classes[i] in category_id_set:
detections_list.append({
'image_id': image_id,
'category_id': int(detection_classes[i]),
'bbox': list(_ConvertBoxToCOCOFormat(detection_boxes[i, :])),
'score': float(detection_scores[i])
})
return detections_list
def ExportSingleImageDetectionMasksToCoco(image_id,
category_id_set,
detection_masks,
detection_scores,
detection_classes):
"""Export detection masks of a single image to COCO format.
This function converts detections represented as numpy arrays to dictionaries
that can be ingested by the COCO evaluation API. We assume that
detection_masks, detection_scores, and detection_classes are in correspondence
- that is: detection_masks[i, :], detection_classes[i] and detection_scores[i]
are associated with the same annotation.
Args:
image_id: unique image identifier either of type integer or string.
category_id_set: A set of valid class ids. Detections with classes not in
category_id_set are dropped.
detection_masks: uint8 numpy array of shape [num_detections, image_height,
image_width] containing detection_masks.
detection_scores: float numpy array of shape [num_detections] containing
scores for detection masks.
detection_classes: integer numpy array of shape [num_detections] containing
the classes for detection masks.
Returns:
a list of detection mask annotations for a single image in the COCO format.
Raises:
ValueError: if (1) detection_masks, detection_scores and detection_classes
do not have the right lengths or (2) if each of the elements inside these
lists do not have the correct shapes or (3) if image_ids are not integers.
"""
if len(detection_classes.shape) != 1 or len(detection_scores.shape) != 1:
raise ValueError('All entries in detection_classes and detection_scores'
'expected to be of rank 1.')
num_boxes = detection_classes.shape[0]
if not num_boxes == len(detection_masks) == detection_scores.shape[0]:
raise ValueError('Corresponding entries in detection_classes, '
'detection_scores and detection_masks should have '
'compatible lengths and shapes '
'Classes length: %d. Masks length: %d. '
'Scores length: %d' % (
detection_classes.shape[0], len(detection_masks),
detection_scores.shape[0]
))
detections_list = []
for i in range(num_boxes):
if detection_classes[i] in category_id_set:
detections_list.append({
'image_id': image_id,
'category_id': int(detection_classes[i]),
'segmentation': _RleCompress(detection_masks[i]),
'score': float(detection_scores[i])
})
return detections_list
def ExportDetectionsToCOCO(image_ids,
detection_boxes,
detection_scores,
detection_classes,
categories,
output_path=None):
"""Export detection annotations in numpy arrays to COCO API.
This function converts a set of predicted detections represented
as numpy arrays to dictionaries that can be ingested by the COCO API.
Inputs to this function are lists, consisting of boxes, scores and
classes, respectively, corresponding to each image for which detections
have been produced. Note that the image_ids provided here must
match the ones given to the ExportGroundtruthToCOCO function in order
for evaluation to work properly.
We assume that for each image, boxes, scores and classes are in
correspondence --- that is: detection_boxes[i, :], detection_scores[i] and
detection_classes[i] are associated with the same detection.
Args:
image_ids: a list of unique image identifier either of type integer or
string.
detection_boxes: list of numpy arrays with shape [num_detection_boxes, 4]
detection_scores: list of numpy arrays (float) with shape
[num_detection_boxes]. Note that num_detection_boxes can be different
for each entry in the list.
detection_classes: list of numpy arrays (int) with shape
[num_detection_boxes]. Note that num_detection_boxes can be different
for each entry in the list.
categories: a list of dictionaries representing all possible categories.
Each dict in this list must have an integer 'id' key uniquely identifying
this category.
output_path: (optional) path for exporting result to JSON
Returns:
list of dictionaries that can be read by COCO API, where each entry
corresponds to a single detection and has keys from:
['image_id', 'category_id', 'bbox', 'score'].
Raises:
ValueError: if (1) detection_boxes and detection_classes do not have the
right lengths or (2) if each of the elements inside these lists do not
have the correct shapes or (3) if image_ids are not integers.
"""
category_id_set = set([cat['id'] for cat in categories])
detections_export_list = []
if not (len(image_ids) == len(detection_boxes) == len(detection_scores) ==
len(detection_classes)):
raise ValueError('Input lists must have the same length')
for image_id, boxes, scores, classes in zip(image_ids, detection_boxes,
detection_scores,
detection_classes):
detections_export_list.extend(ExportSingleImageDetectionBoxesToCoco(
image_id,
category_id_set,
boxes,
scores,
classes))
if output_path:
with tf.gfile.GFile(output_path, 'w') as fid:
json_utils.Dump(detections_export_list, fid, float_digits=4, indent=2)
return detections_export_list
def ExportSegmentsToCOCO(image_ids,
detection_masks,
detection_scores,
detection_classes,
categories,
output_path=None):
"""Export segmentation masks in numpy arrays to COCO API.
This function converts a set of predicted instance masks represented
as numpy arrays to dictionaries that can be ingested by the COCO API.
Inputs to this function are lists, consisting of segments, scores and
classes, respectively, corresponding to each image for which detections
have been produced.
Note this function is recommended to use for small dataset.
For large dataset, it should be used with a merge function
(e.g. in map reduce), otherwise the memory consumption is large.
We assume that for each image, masks, scores and classes are in
correspondence --- that is: detection_masks[i, :, :, :], detection_scores[i]
and detection_classes[i] are associated with the same detection.
Args:
image_ids: list of image ids (typically ints or strings)
detection_masks: list of numpy arrays with shape [num_detection, h, w, 1]
and type uint8. The height and width should match the shape of
corresponding image.
detection_scores: list of numpy arrays (float) with shape
[num_detection]. Note that num_detection can be different
for each entry in the list.
detection_classes: list of numpy arrays (int) with shape
[num_detection]. Note that num_detection can be different
for each entry in the list.
categories: a list of dictionaries representing all possible categories.
Each dict in this list must have an integer 'id' key uniquely identifying
this category.
output_path: (optional) path for exporting result to JSON
Returns:
list of dictionaries that can be read by COCO API, where each entry
corresponds to a single detection and has keys from:
['image_id', 'category_id', 'segmentation', 'score'].
Raises:
ValueError: if detection_masks and detection_classes do not have the
right lengths or if each of the elements inside these lists do not
have the correct shapes.
"""
if not (len(image_ids) == len(detection_masks) == len(detection_scores) ==
len(detection_classes)):
raise ValueError('Input lists must have the same length')
segment_export_list = []
for image_id, masks, scores, classes in zip(image_ids, detection_masks,
detection_scores,
detection_classes):
if len(classes.shape) != 1 or len(scores.shape) != 1:
raise ValueError('All entries in detection_classes and detection_scores'
'expected to be of rank 1.')
if len(masks.shape) != 4:
raise ValueError('All entries in masks expected to be of '
'rank 4. Given {}'.format(masks.shape))
num_boxes = classes.shape[0]
if not num_boxes == masks.shape[0] == scores.shape[0]:
raise ValueError('Corresponding entries in segment_classes, '
'detection_scores and detection_boxes should have '
'compatible shapes (i.e., agree on the 0th dimension).')
category_id_set = set([cat['id'] for cat in categories])
segment_export_list.extend(ExportSingleImageDetectionMasksToCoco(
image_id, category_id_set, np.squeeze(masks, axis=3), scores, classes))
if output_path:
with tf.gfile.GFile(output_path, 'w') as fid:
json_utils.Dump(segment_export_list, fid, float_digits=4, indent=2)
return segment_export_list
def ExportKeypointsToCOCO(image_ids,
detection_keypoints,
detection_scores,
detection_classes,
categories,
output_path=None):
"""Exports keypoints in numpy arrays to COCO API.
This function converts a set of predicted keypoints represented
as numpy arrays to dictionaries that can be ingested by the COCO API.
Inputs to this function are lists, consisting of keypoints, scores and
classes, respectively, corresponding to each image for which detections
have been produced.
We assume that for each image, keypoints, scores and classes are in
correspondence --- that is: detection_keypoints[i, :, :, :],
detection_scores[i] and detection_classes[i] are associated with the same
detection.
Args:
image_ids: list of image ids (typically ints or strings)
detection_keypoints: list of numpy arrays with shape
[num_detection, num_keypoints, 2] and type float32 in absolute
x-y coordinates.
detection_scores: list of numpy arrays (float) with shape
[num_detection]. Note that num_detection can be different
for each entry in the list.
detection_classes: list of numpy arrays (int) with shape
[num_detection]. Note that num_detection can be different
for each entry in the list.
categories: a list of dictionaries representing all possible categories.
Each dict in this list must have an integer 'id' key uniquely identifying
this category and an integer 'num_keypoints' key specifying the number of
keypoints the category has.
output_path: (optional) path for exporting result to JSON
Returns:
list of dictionaries that can be read by COCO API, where each entry
corresponds to a single detection and has keys from:
['image_id', 'category_id', 'keypoints', 'score'].
Raises:
ValueError: if detection_keypoints and detection_classes do not have the
right lengths or if each of the elements inside these lists do not
have the correct shapes.
"""
if not (len(image_ids) == len(detection_keypoints) ==
len(detection_scores) == len(detection_classes)):
raise ValueError('Input lists must have the same length')
keypoints_export_list = []
for image_id, keypoints, scores, classes in zip(
image_ids, detection_keypoints, detection_scores, detection_classes):
if len(classes.shape) != 1 or len(scores.shape) != 1:
raise ValueError('All entries in detection_classes and detection_scores'
'expected to be of rank 1.')
if len(keypoints.shape) != 3:
raise ValueError('All entries in keypoints expected to be of '
'rank 3. Given {}'.format(keypoints.shape))
num_boxes = classes.shape[0]
if not num_boxes == keypoints.shape[0] == scores.shape[0]:
raise ValueError('Corresponding entries in detection_classes, '
'detection_keypoints, and detection_scores should have '
'compatible shapes (i.e., agree on the 0th dimension).')
category_id_set = set([cat['id'] for cat in categories])
category_id_to_num_keypoints_map = {
cat['id']: cat['num_keypoints'] for cat in categories
if 'num_keypoints' in cat}
for i in range(num_boxes):
if classes[i] not in category_id_set:
raise ValueError('class id should be in category_id_set\n')
if classes[i] in category_id_to_num_keypoints_map:
num_keypoints = category_id_to_num_keypoints_map[classes[i]]
# Adds extra ones to indicate the visibility for each keypoint as is
# recommended by MSCOCO.
instance_keypoints = np.concatenate(
[keypoints[i, 0:num_keypoints, :],
np.expand_dims(np.ones(num_keypoints), axis=1)],
axis=1).astype(int)
instance_keypoints = instance_keypoints.flatten().tolist()
keypoints_export_list.append({
'image_id': image_id,
'category_id': int(classes[i]),
'keypoints': instance_keypoints,
'score': float(scores[i])
})
if output_path:
with tf.gfile.GFile(output_path, 'w') as fid:
json_utils.Dump(keypoints_export_list, fid, float_digits=4, indent=2)
return keypoints_export_list