You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

295 lines
12 KiB

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow_model.object_detection.metrics.coco_tools."""
import json
import os
import re
import numpy as np
from pycocotools import mask
import tensorflow as tf
from object_detection.metrics import coco_tools
class CocoToolsTest(tf.test.TestCase):
def setUp(self):
groundtruth_annotations_list = [
{
'id': 1,
'image_id': 'first',
'category_id': 1,
'bbox': [100., 100., 100., 100.],
'area': 100.**2,
'iscrowd': 0
},
{
'id': 2,
'image_id': 'second',
'category_id': 1,
'bbox': [50., 50., 50., 50.],
'area': 50.**2,
'iscrowd': 0
},
]
image_list = [{'id': 'first'}, {'id': 'second'}]
category_list = [{'id': 0, 'name': 'person'},
{'id': 1, 'name': 'cat'},
{'id': 2, 'name': 'dog'}]
self._groundtruth_dict = {
'annotations': groundtruth_annotations_list,
'images': image_list,
'categories': category_list
}
self._detections_list = [
{
'image_id': 'first',
'category_id': 1,
'bbox': [100., 100., 100., 100.],
'score': .8
},
{
'image_id': 'second',
'category_id': 1,
'bbox': [50., 50., 50., 50.],
'score': .7
},
]
def testCocoWrappers(self):
groundtruth = coco_tools.COCOWrapper(self._groundtruth_dict)
detections = groundtruth.LoadAnnotations(self._detections_list)
evaluator = coco_tools.COCOEvalWrapper(groundtruth, detections)
summary_metrics, _ = evaluator.ComputeMetrics()
self.assertAlmostEqual(1.0, summary_metrics['Precision/mAP'])
def testExportGroundtruthToCOCO(self):
image_ids = ['first', 'second']
groundtruth_boxes = [np.array([[100, 100, 200, 200]], np.float),
np.array([[50, 50, 100, 100]], np.float)]
groundtruth_classes = [np.array([1], np.int32), np.array([1], np.int32)]
categories = [{'id': 0, 'name': 'person'},
{'id': 1, 'name': 'cat'},
{'id': 2, 'name': 'dog'}]
output_path = os.path.join(tf.test.get_temp_dir(), 'groundtruth.json')
result = coco_tools.ExportGroundtruthToCOCO(
image_ids,
groundtruth_boxes,
groundtruth_classes,
categories,
output_path=output_path)
self.assertDictEqual(result, self._groundtruth_dict)
with tf.gfile.GFile(output_path, 'r') as f:
written_result = f.read()
# The json output should have floats written to 4 digits of precision.
matcher = re.compile(r'"bbox":\s+\[\n\s+\d+.\d\d\d\d,', re.MULTILINE)
self.assertTrue(matcher.findall(written_result))
written_result = json.loads(written_result)
self.assertAlmostEqual(result, written_result)
def testExportDetectionsToCOCO(self):
image_ids = ['first', 'second']
detections_boxes = [np.array([[100, 100, 200, 200]], np.float),
np.array([[50, 50, 100, 100]], np.float)]
detections_scores = [np.array([.8], np.float), np.array([.7], np.float)]
detections_classes = [np.array([1], np.int32), np.array([1], np.int32)]
categories = [{'id': 0, 'name': 'person'},
{'id': 1, 'name': 'cat'},
{'id': 2, 'name': 'dog'}]
output_path = os.path.join(tf.test.get_temp_dir(), 'detections.json')
result = coco_tools.ExportDetectionsToCOCO(
image_ids,
detections_boxes,
detections_scores,
detections_classes,
categories,
output_path=output_path)
self.assertListEqual(result, self._detections_list)
with tf.gfile.GFile(output_path, 'r') as f:
written_result = f.read()
# The json output should have floats written to 4 digits of precision.
matcher = re.compile(r'"bbox":\s+\[\n\s+\d+.\d\d\d\d,', re.MULTILINE)
self.assertTrue(matcher.findall(written_result))
written_result = json.loads(written_result)
self.assertAlmostEqual(result, written_result)
def testExportSegmentsToCOCO(self):
image_ids = ['first', 'second']
detection_masks = [np.array(
[[[0, 1, 0, 1], [0, 1, 1, 0], [0, 0, 0, 1], [0, 1, 0, 1]]],
dtype=np.uint8), np.array(
[[[0, 1, 0, 1], [0, 1, 1, 0], [0, 0, 0, 1], [0, 1, 0, 1]]],
dtype=np.uint8)]
for i, detection_mask in enumerate(detection_masks):
detection_masks[i] = detection_mask[:, :, :, None]
detection_scores = [np.array([.8], np.float), np.array([.7], np.float)]
detection_classes = [np.array([1], np.int32), np.array([1], np.int32)]
categories = [{'id': 0, 'name': 'person'},
{'id': 1, 'name': 'cat'},
{'id': 2, 'name': 'dog'}]
output_path = os.path.join(tf.test.get_temp_dir(), 'segments.json')
result = coco_tools.ExportSegmentsToCOCO(
image_ids,
detection_masks,
detection_scores,
detection_classes,
categories,
output_path=output_path)
with tf.gfile.GFile(output_path, 'r') as f:
written_result = f.read()
written_result = json.loads(written_result)
mask_load = mask.decode([written_result[0]['segmentation']])
self.assertTrue(np.allclose(mask_load, detection_masks[0]))
self.assertAlmostEqual(result, written_result)
def testExportKeypointsToCOCO(self):
image_ids = ['first', 'second']
detection_keypoints = [
np.array(
[[[100, 200], [300, 400], [500, 600]],
[[50, 150], [250, 350], [450, 550]]], dtype=np.int32),
np.array(
[[[110, 210], [310, 410], [510, 610]],
[[60, 160], [260, 360], [460, 560]]], dtype=np.int32)]
detection_scores = [np.array([.8, 0.2], np.float),
np.array([.7, 0.3], np.float)]
detection_classes = [np.array([1, 1], np.int32), np.array([1, 1], np.int32)]
categories = [{'id': 1, 'name': 'person', 'num_keypoints': 3},
{'id': 2, 'name': 'cat'},
{'id': 3, 'name': 'dog'}]
output_path = os.path.join(tf.test.get_temp_dir(), 'keypoints.json')
result = coco_tools.ExportKeypointsToCOCO(
image_ids,
detection_keypoints,
detection_scores,
detection_classes,
categories,
output_path=output_path)
with tf.gfile.GFile(output_path, 'r') as f:
written_result = f.read()
written_result = json.loads(written_result)
self.assertAlmostEqual(result, written_result)
def testSingleImageDetectionBoxesExport(self):
boxes = np.array([[0, 0, 1, 1],
[0, 0, .5, .5],
[.5, .5, 1, 1]], dtype=np.float32)
classes = np.array([1, 2, 3], dtype=np.int32)
scores = np.array([0.8, 0.2, 0.7], dtype=np.float32)
coco_boxes = np.array([[0, 0, 1, 1],
[0, 0, .5, .5],
[.5, .5, .5, .5]], dtype=np.float32)
coco_annotations = coco_tools.ExportSingleImageDetectionBoxesToCoco(
image_id='first_image',
category_id_set=set([1, 2, 3]),
detection_boxes=boxes,
detection_classes=classes,
detection_scores=scores)
for i, annotation in enumerate(coco_annotations):
self.assertEqual(annotation['image_id'], 'first_image')
self.assertEqual(annotation['category_id'], classes[i])
self.assertAlmostEqual(annotation['score'], scores[i])
self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i])))
def testSingleImageDetectionMaskExport(self):
masks = np.array(
[[[1, 1,], [1, 1]],
[[0, 0], [0, 1]],
[[0, 0], [0, 0]]], dtype=np.uint8)
classes = np.array([1, 2, 3], dtype=np.int32)
scores = np.array([0.8, 0.2, 0.7], dtype=np.float32)
coco_annotations = coco_tools.ExportSingleImageDetectionMasksToCoco(
image_id='first_image',
category_id_set=set([1, 2, 3]),
detection_classes=classes,
detection_scores=scores,
detection_masks=masks)
expected_counts = ['04', '31', '4']
for i, mask_annotation in enumerate(coco_annotations):
self.assertEqual(mask_annotation['segmentation']['counts'],
expected_counts[i])
self.assertTrue(np.all(np.equal(mask.decode(
mask_annotation['segmentation']), masks[i])))
self.assertEqual(mask_annotation['image_id'], 'first_image')
self.assertEqual(mask_annotation['category_id'], classes[i])
self.assertAlmostEqual(mask_annotation['score'], scores[i])
def testSingleImageGroundtruthExport(self):
masks = np.array(
[[[1, 1,], [1, 1]],
[[0, 0], [0, 1]],
[[0, 0], [0, 0]]], dtype=np.uint8)
boxes = np.array([[0, 0, 1, 1],
[0, 0, .5, .5],
[.5, .5, 1, 1]], dtype=np.float32)
coco_boxes = np.array([[0, 0, 1, 1],
[0, 0, .5, .5],
[.5, .5, .5, .5]], dtype=np.float32)
classes = np.array([1, 2, 3], dtype=np.int32)
is_crowd = np.array([0, 1, 0], dtype=np.int32)
next_annotation_id = 1
expected_counts = ['04', '31', '4']
# Tests exporting without passing in is_crowd (for backward compatibility).
coco_annotations = coco_tools.ExportSingleImageGroundtruthToCoco(
image_id='first_image',
category_id_set=set([1, 2, 3]),
next_annotation_id=next_annotation_id,
groundtruth_boxes=boxes,
groundtruth_classes=classes,
groundtruth_masks=masks)
for i, annotation in enumerate(coco_annotations):
self.assertEqual(annotation['segmentation']['counts'],
expected_counts[i])
self.assertTrue(np.all(np.equal(mask.decode(
annotation['segmentation']), masks[i])))
self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i])))
self.assertEqual(annotation['image_id'], 'first_image')
self.assertEqual(annotation['category_id'], classes[i])
self.assertEqual(annotation['id'], i + next_annotation_id)
# Tests exporting with is_crowd.
coco_annotations = coco_tools.ExportSingleImageGroundtruthToCoco(
image_id='first_image',
category_id_set=set([1, 2, 3]),
next_annotation_id=next_annotation_id,
groundtruth_boxes=boxes,
groundtruth_classes=classes,
groundtruth_masks=masks,
groundtruth_is_crowd=is_crowd)
for i, annotation in enumerate(coco_annotations):
self.assertEqual(annotation['segmentation']['counts'],
expected_counts[i])
self.assertTrue(np.all(np.equal(mask.decode(
annotation['segmentation']), masks[i])))
self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i])))
self.assertEqual(annotation['image_id'], 'first_image')
self.assertEqual(annotation['category_id'], classes[i])
self.assertEqual(annotation['iscrowd'], is_crowd[i])
self.assertEqual(annotation['id'], i + next_annotation_id)
if __name__ == '__main__':
tf.test.main()