|
syntax = "proto2";
|
|
|
|
package object_detection.protos;
|
|
|
|
import "object_detection/protos/hyperparams.proto";
|
|
|
|
// Configuration proto for box predictor. See core/box_predictor.py for details.
|
|
message BoxPredictor {
|
|
oneof box_predictor_oneof {
|
|
ConvolutionalBoxPredictor convolutional_box_predictor = 1;
|
|
MaskRCNNBoxPredictor mask_rcnn_box_predictor = 2;
|
|
RfcnBoxPredictor rfcn_box_predictor = 3;
|
|
WeightSharedConvolutionalBoxPredictor
|
|
weight_shared_convolutional_box_predictor = 4;
|
|
}
|
|
}
|
|
|
|
|
|
// Configuration proto for Convolutional box predictor.
|
|
// Next id: 13
|
|
message ConvolutionalBoxPredictor {
|
|
// Hyperparameters for convolution ops used in the box predictor.
|
|
optional Hyperparams conv_hyperparams = 1;
|
|
|
|
// Minimum feature depth prior to predicting box encodings and class
|
|
// predictions.
|
|
optional int32 min_depth = 2 [default = 0];
|
|
|
|
// Maximum feature depth prior to predicting box encodings and class
|
|
// predictions. If max_depth is set to 0, no additional feature map will be
|
|
// inserted before location and class predictions.
|
|
optional int32 max_depth = 3 [default = 0];
|
|
|
|
// Number of the additional conv layers before the predictor.
|
|
optional int32 num_layers_before_predictor = 4 [default = 0];
|
|
|
|
// Whether to use dropout for class prediction.
|
|
optional bool use_dropout = 5 [default = true];
|
|
|
|
// Keep probability for dropout
|
|
optional float dropout_keep_probability = 6 [default = 0.8];
|
|
|
|
// Size of final convolution kernel. If the spatial resolution of the feature
|
|
// map is smaller than the kernel size, then the kernel size is set to
|
|
// min(feature_width, feature_height).
|
|
optional int32 kernel_size = 7 [default = 1];
|
|
|
|
// Size of the encoding for boxes.
|
|
optional int32 box_code_size = 8 [default = 4];
|
|
|
|
// Whether to apply sigmoid to the output of class predictions.
|
|
// TODO(jonathanhuang): Do we need this since we have a post processing
|
|
// module.?
|
|
optional bool apply_sigmoid_to_scores = 9 [default = false];
|
|
|
|
optional float class_prediction_bias_init = 10 [default = 0.0];
|
|
|
|
// Whether to use depthwise separable convolution for box predictor layers.
|
|
optional bool use_depthwise = 11 [default = false];
|
|
}
|
|
|
|
// Configuration proto for weight shared convolutional box predictor.
|
|
// Next id: 18
|
|
message WeightSharedConvolutionalBoxPredictor {
|
|
// Hyperparameters for convolution ops used in the box predictor.
|
|
optional Hyperparams conv_hyperparams = 1;
|
|
|
|
// Number of the additional conv layers before the predictor.
|
|
optional int32 num_layers_before_predictor = 4 [default = 0];
|
|
|
|
// Output depth for the convolution ops prior to predicting box encodings
|
|
// and class predictions.
|
|
optional int32 depth = 2 [default = 0];
|
|
|
|
// Size of final convolution kernel. If the spatial resolution of the feature
|
|
// map is smaller than the kernel size, then the kernel size is set to
|
|
// min(feature_width, feature_height).
|
|
optional int32 kernel_size = 7 [default = 3];
|
|
|
|
// Size of the encoding for boxes.
|
|
optional int32 box_code_size = 8 [default = 4];
|
|
|
|
// Bias initialization for class prediction. It has been show to stabilize
|
|
// training where there are large number of negative boxes. See
|
|
// https://arxiv.org/abs/1708.02002 for details.
|
|
optional float class_prediction_bias_init = 10 [default = 0.0];
|
|
|
|
// Whether to use dropout for class prediction.
|
|
optional bool use_dropout = 11 [default = false];
|
|
|
|
// Keep probability for dropout.
|
|
optional float dropout_keep_probability = 12 [default = 0.8];
|
|
|
|
// Whether to share the multi-layer tower between box prediction and class
|
|
// prediction heads.
|
|
optional bool share_prediction_tower = 13 [default = false];
|
|
|
|
// Whether to use depthwise separable convolution for box predictor layers.
|
|
optional bool use_depthwise = 14 [default = false];
|
|
|
|
// Enum to specify how to convert the detection scores at inference time.
|
|
enum ScoreConverter {
|
|
// Input scores equals output scores.
|
|
IDENTITY = 0;
|
|
|
|
// Applies a sigmoid on input scores.
|
|
SIGMOID = 1;
|
|
}
|
|
|
|
// Callable elementwise score converter at inference time.
|
|
optional ScoreConverter score_converter = 16 [default = IDENTITY];
|
|
|
|
// If specified, apply clipping to box encodings.
|
|
message BoxEncodingsClipRange {
|
|
optional float min = 1;
|
|
optional float max = 2;
|
|
}
|
|
optional BoxEncodingsClipRange box_encodings_clip_range = 17;
|
|
}
|
|
|
|
// TODO(alirezafathi): Refactor the proto file to be able to configure mask rcnn
|
|
// head easily.
|
|
// Next id: 15
|
|
message MaskRCNNBoxPredictor {
|
|
// Hyperparameters for fully connected ops used in the box predictor.
|
|
optional Hyperparams fc_hyperparams = 1;
|
|
|
|
// Whether to use dropout op prior to the both box and class predictions.
|
|
optional bool use_dropout = 2 [default = false];
|
|
|
|
// Keep probability for dropout. This is only used if use_dropout is true.
|
|
optional float dropout_keep_probability = 3 [default = 0.5];
|
|
|
|
// Size of the encoding for the boxes.
|
|
optional int32 box_code_size = 4 [default = 4];
|
|
|
|
// Hyperparameters for convolution ops used in the box predictor.
|
|
optional Hyperparams conv_hyperparams = 5;
|
|
|
|
// Whether to predict instance masks inside detection boxes.
|
|
optional bool predict_instance_masks = 6 [default = false];
|
|
|
|
// The depth for the first conv2d_transpose op applied to the
|
|
// image_features in the mask prediction branch. If set to 0, the value
|
|
// will be set automatically based on the number of channels in the image
|
|
// features and the number of classes.
|
|
optional int32 mask_prediction_conv_depth = 7 [default = 256];
|
|
|
|
// Whether to predict keypoints inside detection boxes.
|
|
optional bool predict_keypoints = 8 [default = false];
|
|
|
|
// The height and the width of the predicted mask.
|
|
optional int32 mask_height = 9 [default = 15];
|
|
optional int32 mask_width = 10 [default = 15];
|
|
|
|
// The number of convolutions applied to image_features in the mask prediction
|
|
// branch.
|
|
optional int32 mask_prediction_num_conv_layers = 11 [default = 2];
|
|
optional bool masks_are_class_agnostic = 12 [default = false];
|
|
|
|
// Whether to use one box for all classes rather than a different box for each
|
|
// class.
|
|
optional bool share_box_across_classes = 13 [default = false];
|
|
|
|
// Whether to apply convolutions on mask features before upsampling using
|
|
// nearest neighbor resizing.
|
|
// By default, mask features are resized to [`mask_height`, `mask_width`]
|
|
// before applying convolutions and predicting masks.
|
|
optional bool convolve_then_upsample_masks = 14 [default = false];
|
|
}
|
|
|
|
message RfcnBoxPredictor {
|
|
// Hyperparameters for convolution ops used in the box predictor.
|
|
optional Hyperparams conv_hyperparams = 1;
|
|
|
|
// Bin sizes for RFCN crops.
|
|
optional int32 num_spatial_bins_height = 2 [default = 3];
|
|
|
|
optional int32 num_spatial_bins_width = 3 [default = 3];
|
|
|
|
// Target depth to reduce the input image features to.
|
|
optional int32 depth = 4 [default = 1024];
|
|
|
|
// Size of the encoding for the boxes.
|
|
optional int32 box_code_size = 5 [default = 4];
|
|
|
|
// Size to resize the rfcn crops to.
|
|
optional int32 crop_height = 6 [default = 12];
|
|
|
|
optional int32 crop_width = 7 [default = 12];
|
|
}
|