|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Tests for object_detection.utils.learning_schedules."""
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from object_detection.utils import learning_schedules
|
|
from object_detection.utils import test_case
|
|
|
|
|
|
class LearningSchedulesTest(test_case.TestCase):
|
|
|
|
def testExponentialDecayWithBurnin(self):
|
|
def graph_fn(global_step):
|
|
learning_rate_base = 1.0
|
|
learning_rate_decay_steps = 3
|
|
learning_rate_decay_factor = .1
|
|
burnin_learning_rate = .5
|
|
burnin_steps = 2
|
|
min_learning_rate = .05
|
|
learning_rate = learning_schedules.exponential_decay_with_burnin(
|
|
global_step, learning_rate_base, learning_rate_decay_steps,
|
|
learning_rate_decay_factor, burnin_learning_rate, burnin_steps,
|
|
min_learning_rate)
|
|
assert learning_rate.op.name.endswith('learning_rate')
|
|
return (learning_rate,)
|
|
|
|
output_rates = [
|
|
self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(9)
|
|
]
|
|
|
|
exp_rates = [.5, .5, 1, 1, 1, .1, .1, .1, .05]
|
|
self.assertAllClose(output_rates, exp_rates, rtol=1e-4)
|
|
|
|
def testCosineDecayWithWarmup(self):
|
|
def graph_fn(global_step):
|
|
learning_rate_base = 1.0
|
|
total_steps = 100
|
|
warmup_learning_rate = 0.1
|
|
warmup_steps = 9
|
|
learning_rate = learning_schedules.cosine_decay_with_warmup(
|
|
global_step, learning_rate_base, total_steps,
|
|
warmup_learning_rate, warmup_steps)
|
|
assert learning_rate.op.name.endswith('learning_rate')
|
|
return (learning_rate,)
|
|
exp_rates = [0.1, 0.5, 0.9, 1.0, 0]
|
|
input_global_steps = [0, 4, 8, 9, 100]
|
|
output_rates = [
|
|
self.execute(graph_fn, [np.array(step).astype(np.int64)])
|
|
for step in input_global_steps
|
|
]
|
|
self.assertAllClose(output_rates, exp_rates)
|
|
|
|
def testCosineDecayAfterTotalSteps(self):
|
|
def graph_fn(global_step):
|
|
learning_rate_base = 1.0
|
|
total_steps = 100
|
|
warmup_learning_rate = 0.1
|
|
warmup_steps = 9
|
|
learning_rate = learning_schedules.cosine_decay_with_warmup(
|
|
global_step, learning_rate_base, total_steps,
|
|
warmup_learning_rate, warmup_steps)
|
|
assert learning_rate.op.name.endswith('learning_rate')
|
|
return (learning_rate,)
|
|
exp_rates = [0]
|
|
input_global_steps = [101]
|
|
output_rates = [
|
|
self.execute(graph_fn, [np.array(step).astype(np.int64)])
|
|
for step in input_global_steps
|
|
]
|
|
self.assertAllClose(output_rates, exp_rates)
|
|
|
|
def testCosineDecayWithHoldBaseLearningRateSteps(self):
|
|
def graph_fn(global_step):
|
|
learning_rate_base = 1.0
|
|
total_steps = 120
|
|
warmup_learning_rate = 0.1
|
|
warmup_steps = 9
|
|
hold_base_rate_steps = 20
|
|
learning_rate = learning_schedules.cosine_decay_with_warmup(
|
|
global_step, learning_rate_base, total_steps,
|
|
warmup_learning_rate, warmup_steps, hold_base_rate_steps)
|
|
assert learning_rate.op.name.endswith('learning_rate')
|
|
return (learning_rate,)
|
|
exp_rates = [0.1, 0.5, 0.9, 1.0, 1.0, 1.0, 0.999702, 0.874255, 0.577365,
|
|
0.0]
|
|
input_global_steps = [0, 4, 8, 9, 10, 29, 30, 50, 70, 120]
|
|
output_rates = [
|
|
self.execute(graph_fn, [np.array(step).astype(np.int64)])
|
|
for step in input_global_steps
|
|
]
|
|
self.assertAllClose(output_rates, exp_rates)
|
|
|
|
def testManualStepping(self):
|
|
def graph_fn(global_step):
|
|
boundaries = [2, 3, 7]
|
|
rates = [1.0, 2.0, 3.0, 4.0]
|
|
learning_rate = learning_schedules.manual_stepping(
|
|
global_step, boundaries, rates)
|
|
assert learning_rate.op.name.endswith('learning_rate')
|
|
return (learning_rate,)
|
|
|
|
output_rates = [
|
|
self.execute(graph_fn, [np.array(i).astype(np.int64)])
|
|
for i in range(10)
|
|
]
|
|
exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0]
|
|
self.assertAllClose(output_rates, exp_rates)
|
|
|
|
def testManualSteppingWithWarmup(self):
|
|
def graph_fn(global_step):
|
|
boundaries = [4, 6, 8]
|
|
rates = [0.02, 0.10, 0.01, 0.001]
|
|
learning_rate = learning_schedules.manual_stepping(
|
|
global_step, boundaries, rates, warmup=True)
|
|
assert learning_rate.op.name.endswith('learning_rate')
|
|
return (learning_rate,)
|
|
|
|
output_rates = [
|
|
self.execute(graph_fn, [np.array(i).astype(np.int64)])
|
|
for i in range(9)
|
|
]
|
|
exp_rates = [0.02, 0.04, 0.06, 0.08, 0.10, 0.10, 0.01, 0.01, 0.001]
|
|
self.assertAllClose(output_rates, exp_rates)
|
|
|
|
def testManualSteppingWithZeroBoundaries(self):
|
|
def graph_fn(global_step):
|
|
boundaries = []
|
|
rates = [0.01]
|
|
learning_rate = learning_schedules.manual_stepping(
|
|
global_step, boundaries, rates)
|
|
return (learning_rate,)
|
|
|
|
output_rates = [
|
|
self.execute(graph_fn, [np.array(i).astype(np.int64)])
|
|
for i in range(4)
|
|
]
|
|
exp_rates = [0.01] * 4
|
|
self.assertAllClose(output_rates, exp_rates)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|