# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Tests for object_detection.utils.test_utils."""
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from object_detection.utils import test_utils
|
|
|
|
|
|
class TestUtilsTest(tf.test.TestCase):
|
|
|
|
def test_diagonal_gradient_image(self):
|
|
"""Tests if a good pyramid image is created."""
|
|
pyramid_image = test_utils.create_diagonal_gradient_image(3, 4, 2)
|
|
|
|
# Test which is easy to understand.
|
|
expected_first_channel = np.array([[3, 2, 1, 0],
|
|
[4, 3, 2, 1],
|
|
[5, 4, 3, 2]], dtype=np.float32)
|
|
self.assertAllEqual(np.squeeze(pyramid_image[:, :, 0]),
|
|
expected_first_channel)
|
|
|
|
# Actual test.
|
|
expected_image = np.array([[[3, 30],
|
|
[2, 20],
|
|
[1, 10],
|
|
[0, 0]],
|
|
[[4, 40],
|
|
[3, 30],
|
|
[2, 20],
|
|
[1, 10]],
|
|
[[5, 50],
|
|
[4, 40],
|
|
[3, 30],
|
|
[2, 20]]], dtype=np.float32)
|
|
|
|
self.assertAllEqual(pyramid_image, expected_image)
|
|
|
|
def test_random_boxes(self):
|
|
"""Tests if valid random boxes are created."""
|
|
num_boxes = 1000
|
|
max_height = 3
|
|
max_width = 5
|
|
boxes = test_utils.create_random_boxes(num_boxes,
|
|
max_height,
|
|
max_width)
|
|
|
|
true_column = np.ones(shape=(num_boxes)) == 1
|
|
self.assertAllEqual(boxes[:, 0] < boxes[:, 2], true_column)
|
|
self.assertAllEqual(boxes[:, 1] < boxes[:, 3], true_column)
|
|
|
|
self.assertTrue(boxes[:, 0].min() >= 0)
|
|
self.assertTrue(boxes[:, 1].min() >= 0)
|
|
self.assertTrue(boxes[:, 2].max() <= max_height)
|
|
self.assertTrue(boxes[:, 3].max() <= max_width)
|
|
|
|
def test_first_rows_close_as_set(self):
|
|
a = [1, 2, 3, 0, 0]
|
|
b = [3, 2, 1, 0, 0]
|
|
k = 3
|
|
self.assertTrue(test_utils.first_rows_close_as_set(a, b, k))
|
|
|
|
a = [[1, 2], [1, 4], [0, 0]]
|
|
b = [[1, 4 + 1e-9], [1, 2], [0, 0]]
|
|
k = 2
|
|
self.assertTrue(test_utils.first_rows_close_as_set(a, b, k))
|
|
|
|
a = [[1, 2], [1, 4], [0, 0]]
|
|
b = [[1, 4 + 1e-9], [2, 2], [0, 0]]
|
|
k = 2
|
|
self.assertFalse(test_utils.first_rows_close_as_set(a, b, k))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|