# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Tests for object_detection.np_mask_ops."""
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from object_detection.utils import np_mask_ops
|
|
|
|
|
|
class MaskOpsTests(tf.test.TestCase):
|
|
|
|
def setUp(self):
|
|
masks1_0 = np.array([[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[1, 1, 1, 1, 0, 0, 0, 0],
|
|
[1, 1, 1, 1, 0, 0, 0, 0]],
|
|
dtype=np.uint8)
|
|
masks1_1 = np.array([[1, 1, 1, 1, 1, 1, 1, 1],
|
|
[1, 1, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0]],
|
|
dtype=np.uint8)
|
|
masks1 = np.stack([masks1_0, masks1_1])
|
|
masks2_0 = np.array([[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[1, 1, 1, 1, 0, 0, 0, 0],
|
|
[1, 1, 1, 1, 0, 0, 0, 0]],
|
|
dtype=np.uint8)
|
|
masks2_1 = np.array([[1, 1, 1, 1, 1, 1, 1, 0],
|
|
[1, 1, 1, 1, 1, 0, 0, 0],
|
|
[1, 1, 1, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0]],
|
|
dtype=np.uint8)
|
|
masks2_2 = np.array([[1, 1, 1, 1, 1, 0, 0, 0],
|
|
[1, 1, 1, 1, 1, 0, 0, 0],
|
|
[1, 1, 1, 1, 1, 0, 0, 0],
|
|
[1, 1, 1, 1, 1, 0, 0, 0],
|
|
[1, 1, 1, 1, 1, 0, 0, 0]],
|
|
dtype=np.uint8)
|
|
masks2 = np.stack([masks2_0, masks2_1, masks2_2])
|
|
self.masks1 = masks1
|
|
self.masks2 = masks2
|
|
|
|
def testArea(self):
|
|
areas = np_mask_ops.area(self.masks1)
|
|
expected_areas = np.array([8.0, 10.0], dtype=np.float32)
|
|
self.assertAllClose(expected_areas, areas)
|
|
|
|
def testIntersection(self):
|
|
intersection = np_mask_ops.intersection(self.masks1, self.masks2)
|
|
expected_intersection = np.array(
|
|
[[8.0, 0.0, 8.0], [0.0, 9.0, 7.0]], dtype=np.float32)
|
|
self.assertAllClose(intersection, expected_intersection)
|
|
|
|
def testIOU(self):
|
|
iou = np_mask_ops.iou(self.masks1, self.masks2)
|
|
expected_iou = np.array(
|
|
[[1.0, 0.0, 8.0/25.0], [0.0, 9.0 / 16.0, 7.0 / 28.0]], dtype=np.float32)
|
|
self.assertAllClose(iou, expected_iou)
|
|
|
|
def testIOA(self):
|
|
ioa21 = np_mask_ops.ioa(self.masks1, self.masks2)
|
|
expected_ioa21 = np.array([[1.0, 0.0, 8.0/25.0],
|
|
[0.0, 9.0/15.0, 7.0/25.0]],
|
|
dtype=np.float32)
|
|
self.assertAllClose(ioa21, expected_ioa21)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|