|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Tests for object_detection.utils.variables_helper."""
|
|
import os
|
|
|
|
import tensorflow as tf
|
|
|
|
from object_detection.utils import variables_helper
|
|
|
|
|
|
class FilterVariablesTest(tf.test.TestCase):
|
|
|
|
def _create_variables(self):
|
|
return [tf.Variable(1.0, name='FeatureExtractor/InceptionV3/weights'),
|
|
tf.Variable(1.0, name='FeatureExtractor/InceptionV3/biases'),
|
|
tf.Variable(1.0, name='StackProposalGenerator/weights'),
|
|
tf.Variable(1.0, name='StackProposalGenerator/biases')]
|
|
|
|
def test_return_all_variables_when_empty_regex(self):
|
|
variables = self._create_variables()
|
|
out_variables = variables_helper.filter_variables(variables, [''])
|
|
self.assertItemsEqual(out_variables, variables)
|
|
|
|
def test_return_variables_which_do_not_match_single_regex(self):
|
|
variables = self._create_variables()
|
|
out_variables = variables_helper.filter_variables(variables,
|
|
['FeatureExtractor/.*'])
|
|
self.assertItemsEqual(out_variables, variables[2:])
|
|
|
|
def test_return_variables_which_do_not_match_any_regex_in_list(self):
|
|
variables = self._create_variables()
|
|
out_variables = variables_helper.filter_variables(variables, [
|
|
'FeatureExtractor.*biases', 'StackProposalGenerator.*biases'
|
|
])
|
|
self.assertItemsEqual(out_variables, [variables[0], variables[2]])
|
|
|
|
def test_return_variables_matching_empty_regex_list(self):
|
|
variables = self._create_variables()
|
|
out_variables = variables_helper.filter_variables(
|
|
variables, [''], invert=True)
|
|
self.assertItemsEqual(out_variables, [])
|
|
|
|
def test_return_variables_matching_some_regex_in_list(self):
|
|
variables = self._create_variables()
|
|
out_variables = variables_helper.filter_variables(
|
|
variables,
|
|
['FeatureExtractor.*biases', 'StackProposalGenerator.*biases'],
|
|
invert=True)
|
|
self.assertItemsEqual(out_variables, [variables[1], variables[3]])
|
|
|
|
|
|
class MultiplyGradientsMatchingRegexTest(tf.test.TestCase):
|
|
|
|
def _create_grads_and_vars(self):
|
|
return [(tf.constant(1.0),
|
|
tf.Variable(1.0, name='FeatureExtractor/InceptionV3/weights')),
|
|
(tf.constant(2.0),
|
|
tf.Variable(2.0, name='FeatureExtractor/InceptionV3/biases')),
|
|
(tf.constant(3.0),
|
|
tf.Variable(3.0, name='StackProposalGenerator/weights')),
|
|
(tf.constant(4.0),
|
|
tf.Variable(4.0, name='StackProposalGenerator/biases'))]
|
|
|
|
def test_multiply_all_feature_extractor_variables(self):
|
|
grads_and_vars = self._create_grads_and_vars()
|
|
regex_list = ['FeatureExtractor/.*']
|
|
multiplier = 0.0
|
|
grads_and_vars = variables_helper.multiply_gradients_matching_regex(
|
|
grads_and_vars, regex_list, multiplier)
|
|
exp_output = [(0.0, 1.0), (0.0, 2.0), (3.0, 3.0), (4.0, 4.0)]
|
|
init_op = tf.global_variables_initializer()
|
|
with self.test_session() as sess:
|
|
sess.run(init_op)
|
|
output = sess.run(grads_and_vars)
|
|
self.assertItemsEqual(output, exp_output)
|
|
|
|
def test_multiply_all_bias_variables(self):
|
|
grads_and_vars = self._create_grads_and_vars()
|
|
regex_list = ['.*/biases']
|
|
multiplier = 0.0
|
|
grads_and_vars = variables_helper.multiply_gradients_matching_regex(
|
|
grads_and_vars, regex_list, multiplier)
|
|
exp_output = [(1.0, 1.0), (0.0, 2.0), (3.0, 3.0), (0.0, 4.0)]
|
|
init_op = tf.global_variables_initializer()
|
|
with self.test_session() as sess:
|
|
sess.run(init_op)
|
|
output = sess.run(grads_and_vars)
|
|
self.assertItemsEqual(output, exp_output)
|
|
|
|
|
|
class FreezeGradientsMatchingRegexTest(tf.test.TestCase):
|
|
|
|
def _create_grads_and_vars(self):
|
|
return [(tf.constant(1.0),
|
|
tf.Variable(1.0, name='FeatureExtractor/InceptionV3/weights')),
|
|
(tf.constant(2.0),
|
|
tf.Variable(2.0, name='FeatureExtractor/InceptionV3/biases')),
|
|
(tf.constant(3.0),
|
|
tf.Variable(3.0, name='StackProposalGenerator/weights')),
|
|
(tf.constant(4.0),
|
|
tf.Variable(4.0, name='StackProposalGenerator/biases'))]
|
|
|
|
def test_freeze_all_feature_extractor_variables(self):
|
|
grads_and_vars = self._create_grads_and_vars()
|
|
regex_list = ['FeatureExtractor/.*']
|
|
grads_and_vars = variables_helper.freeze_gradients_matching_regex(
|
|
grads_and_vars, regex_list)
|
|
exp_output = [(3.0, 3.0), (4.0, 4.0)]
|
|
init_op = tf.global_variables_initializer()
|
|
with self.test_session() as sess:
|
|
sess.run(init_op)
|
|
output = sess.run(grads_and_vars)
|
|
self.assertItemsEqual(output, exp_output)
|
|
|
|
|
|
class GetVariablesAvailableInCheckpointTest(tf.test.TestCase):
|
|
|
|
def test_return_all_variables_from_checkpoint(self):
|
|
with tf.Graph().as_default():
|
|
variables = [
|
|
tf.Variable(1.0, name='weights'),
|
|
tf.Variable(1.0, name='biases')
|
|
]
|
|
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
|
|
init_op = tf.global_variables_initializer()
|
|
saver = tf.train.Saver(variables)
|
|
with self.test_session() as sess:
|
|
sess.run(init_op)
|
|
saver.save(sess, checkpoint_path)
|
|
out_variables = variables_helper.get_variables_available_in_checkpoint(
|
|
variables, checkpoint_path)
|
|
self.assertItemsEqual(out_variables, variables)
|
|
|
|
def test_return_all_variables_from_checkpoint_with_partition(self):
|
|
with tf.Graph().as_default():
|
|
partitioner = tf.fixed_size_partitioner(2)
|
|
variables = [
|
|
tf.get_variable(
|
|
name='weights', shape=(2, 2), partitioner=partitioner),
|
|
tf.Variable([1.0, 2.0], name='biases')
|
|
]
|
|
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
|
|
init_op = tf.global_variables_initializer()
|
|
saver = tf.train.Saver(variables)
|
|
with self.test_session() as sess:
|
|
sess.run(init_op)
|
|
saver.save(sess, checkpoint_path)
|
|
out_variables = variables_helper.get_variables_available_in_checkpoint(
|
|
variables, checkpoint_path)
|
|
self.assertItemsEqual(out_variables, variables)
|
|
|
|
def test_return_variables_available_in_checkpoint(self):
|
|
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
|
|
with tf.Graph().as_default():
|
|
weight_variable = tf.Variable(1.0, name='weights')
|
|
global_step = tf.train.get_or_create_global_step()
|
|
graph1_variables = [
|
|
weight_variable,
|
|
global_step
|
|
]
|
|
init_op = tf.global_variables_initializer()
|
|
saver = tf.train.Saver(graph1_variables)
|
|
with self.test_session() as sess:
|
|
sess.run(init_op)
|
|
saver.save(sess, checkpoint_path)
|
|
|
|
with tf.Graph().as_default():
|
|
graph2_variables = graph1_variables + [tf.Variable(1.0, name='biases')]
|
|
out_variables = variables_helper.get_variables_available_in_checkpoint(
|
|
graph2_variables, checkpoint_path, include_global_step=False)
|
|
self.assertItemsEqual(out_variables, [weight_variable])
|
|
|
|
def test_return_variables_available_an_checkpoint_with_dict_inputs(self):
|
|
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
|
|
with tf.Graph().as_default():
|
|
graph1_variables = [
|
|
tf.Variable(1.0, name='ckpt_weights'),
|
|
]
|
|
init_op = tf.global_variables_initializer()
|
|
saver = tf.train.Saver(graph1_variables)
|
|
with self.test_session() as sess:
|
|
sess.run(init_op)
|
|
saver.save(sess, checkpoint_path)
|
|
|
|
with tf.Graph().as_default():
|
|
graph2_variables_dict = {
|
|
'ckpt_weights': tf.Variable(1.0, name='weights'),
|
|
'ckpt_biases': tf.Variable(1.0, name='biases')
|
|
}
|
|
out_variables = variables_helper.get_variables_available_in_checkpoint(
|
|
graph2_variables_dict, checkpoint_path)
|
|
|
|
self.assertTrue(isinstance(out_variables, dict))
|
|
self.assertItemsEqual(out_variables.keys(), ['ckpt_weights'])
|
|
self.assertTrue(out_variables['ckpt_weights'].op.name == 'weights')
|
|
|
|
def test_return_variables_with_correct_sizes(self):
|
|
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
|
|
with tf.Graph().as_default():
|
|
bias_variable = tf.Variable(3.0, name='biases')
|
|
global_step = tf.train.get_or_create_global_step()
|
|
graph1_variables = [
|
|
tf.Variable([[1.0, 2.0], [3.0, 4.0]], name='weights'),
|
|
bias_variable,
|
|
global_step
|
|
]
|
|
init_op = tf.global_variables_initializer()
|
|
saver = tf.train.Saver(graph1_variables)
|
|
with self.test_session() as sess:
|
|
sess.run(init_op)
|
|
saver.save(sess, checkpoint_path)
|
|
|
|
with tf.Graph().as_default():
|
|
graph2_variables = [
|
|
tf.Variable([1.0, 2.0], name='weights'), # New variable shape.
|
|
bias_variable,
|
|
global_step
|
|
]
|
|
|
|
out_variables = variables_helper.get_variables_available_in_checkpoint(
|
|
graph2_variables, checkpoint_path, include_global_step=True)
|
|
self.assertItemsEqual(out_variables, [bias_variable, global_step])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|