|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Detection model trainer.
|
|
|
|
This file provides a generic training method that can be used to train a
|
|
DetectionModel.
|
|
"""
|
|
|
|
import functools
|
|
|
|
import tensorflow as tf
|
|
|
|
from object_detection.builders import optimizer_builder
|
|
from object_detection.builders import preprocessor_builder
|
|
from object_detection.core import batcher
|
|
from object_detection.core import preprocessor
|
|
from object_detection.core import standard_fields as fields
|
|
from object_detection.utils import ops as util_ops
|
|
from object_detection.utils import variables_helper
|
|
from deployment import model_deploy
|
|
|
|
slim = tf.contrib.slim
|
|
|
|
|
|
def create_input_queue(batch_size_per_clone, create_tensor_dict_fn,
|
|
batch_queue_capacity, num_batch_queue_threads,
|
|
prefetch_queue_capacity, data_augmentation_options):
|
|
"""Sets up reader, prefetcher and returns input queue.
|
|
|
|
Args:
|
|
batch_size_per_clone: batch size to use per clone.
|
|
create_tensor_dict_fn: function to create tensor dictionary.
|
|
batch_queue_capacity: maximum number of elements to store within a queue.
|
|
num_batch_queue_threads: number of threads to use for batching.
|
|
prefetch_queue_capacity: maximum capacity of the queue used to prefetch
|
|
assembled batches.
|
|
data_augmentation_options: a list of tuples, where each tuple contains a
|
|
data augmentation function and a dictionary containing arguments and their
|
|
values (see preprocessor.py).
|
|
|
|
Returns:
|
|
input queue: a batcher.BatchQueue object holding enqueued tensor_dicts
|
|
(which hold images, boxes and targets). To get a batch of tensor_dicts,
|
|
call input_queue.Dequeue().
|
|
"""
|
|
tensor_dict = create_tensor_dict_fn()
|
|
|
|
tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
|
|
tensor_dict[fields.InputDataFields.image], 0)
|
|
|
|
images = tensor_dict[fields.InputDataFields.image]
|
|
float_images = tf.cast(images, dtype=tf.float32)
|
|
tensor_dict[fields.InputDataFields.image] = float_images
|
|
|
|
include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
|
|
in tensor_dict)
|
|
include_keypoints = (fields.InputDataFields.groundtruth_keypoints
|
|
in tensor_dict)
|
|
include_multiclass_scores = (fields.InputDataFields.multiclass_scores
|
|
in tensor_dict)
|
|
if data_augmentation_options:
|
|
tensor_dict = preprocessor.preprocess(
|
|
tensor_dict, data_augmentation_options,
|
|
func_arg_map=preprocessor.get_default_func_arg_map(
|
|
include_label_weights=True,
|
|
include_multiclass_scores=include_multiclass_scores,
|
|
include_instance_masks=include_instance_masks,
|
|
include_keypoints=include_keypoints))
|
|
|
|
input_queue = batcher.BatchQueue(
|
|
tensor_dict,
|
|
batch_size=batch_size_per_clone,
|
|
batch_queue_capacity=batch_queue_capacity,
|
|
num_batch_queue_threads=num_batch_queue_threads,
|
|
prefetch_queue_capacity=prefetch_queue_capacity)
|
|
return input_queue
|
|
|
|
|
|
def get_inputs(input_queue,
|
|
num_classes,
|
|
merge_multiple_label_boxes=False,
|
|
use_multiclass_scores=False):
|
|
"""Dequeues batch and constructs inputs to object detection model.
|
|
|
|
Args:
|
|
input_queue: BatchQueue object holding enqueued tensor_dicts.
|
|
num_classes: Number of classes.
|
|
merge_multiple_label_boxes: Whether to merge boxes with multiple labels
|
|
or not. Defaults to false. Merged boxes are represented with a single
|
|
box and a k-hot encoding of the multiple labels associated with the
|
|
boxes.
|
|
use_multiclass_scores: Whether to use multiclass scores instead of
|
|
groundtruth_classes.
|
|
|
|
Returns:
|
|
images: a list of 3-D float tensor of images.
|
|
image_keys: a list of string keys for the images.
|
|
locations_list: a list of tensors of shape [num_boxes, 4]
|
|
containing the corners of the groundtruth boxes.
|
|
classes_list: a list of padded one-hot (or K-hot) float32 tensors containing
|
|
target classes.
|
|
masks_list: a list of 3-D float tensors of shape [num_boxes, image_height,
|
|
image_width] containing instance masks for objects if present in the
|
|
input_queue. Else returns None.
|
|
keypoints_list: a list of 3-D float tensors of shape [num_boxes,
|
|
num_keypoints, 2] containing keypoints for objects if present in the
|
|
input queue. Else returns None.
|
|
weights_lists: a list of 1-D float32 tensors of shape [num_boxes]
|
|
containing groundtruth weight for each box.
|
|
"""
|
|
read_data_list = input_queue.dequeue()
|
|
label_id_offset = 1
|
|
def extract_images_and_targets(read_data):
|
|
"""Extract images and targets from the input dict."""
|
|
image = read_data[fields.InputDataFields.image]
|
|
key = ''
|
|
if fields.InputDataFields.source_id in read_data:
|
|
key = read_data[fields.InputDataFields.source_id]
|
|
location_gt = read_data[fields.InputDataFields.groundtruth_boxes]
|
|
classes_gt = tf.cast(read_data[fields.InputDataFields.groundtruth_classes],
|
|
tf.int32)
|
|
classes_gt -= label_id_offset
|
|
|
|
if merge_multiple_label_boxes and use_multiclass_scores:
|
|
raise ValueError(
|
|
'Using both merge_multiple_label_boxes and use_multiclass_scores is'
|
|
'not supported'
|
|
)
|
|
|
|
if merge_multiple_label_boxes:
|
|
location_gt, classes_gt, _ = util_ops.merge_boxes_with_multiple_labels(
|
|
location_gt, classes_gt, num_classes)
|
|
classes_gt = tf.cast(classes_gt, tf.float32)
|
|
elif use_multiclass_scores:
|
|
classes_gt = tf.cast(read_data[fields.InputDataFields.multiclass_scores],
|
|
tf.float32)
|
|
else:
|
|
classes_gt = util_ops.padded_one_hot_encoding(
|
|
indices=classes_gt, depth=num_classes, left_pad=0)
|
|
masks_gt = read_data.get(fields.InputDataFields.groundtruth_instance_masks)
|
|
keypoints_gt = read_data.get(fields.InputDataFields.groundtruth_keypoints)
|
|
if (merge_multiple_label_boxes and (
|
|
masks_gt is not None or keypoints_gt is not None)):
|
|
raise NotImplementedError('Multi-label support is only for boxes.')
|
|
weights_gt = read_data.get(
|
|
fields.InputDataFields.groundtruth_weights)
|
|
return (image, key, location_gt, classes_gt, masks_gt, keypoints_gt,
|
|
weights_gt)
|
|
|
|
return zip(*map(extract_images_and_targets, read_data_list))
|
|
|
|
|
|
def _create_losses(input_queue, create_model_fn, train_config):
|
|
"""Creates loss function for a DetectionModel.
|
|
|
|
Args:
|
|
input_queue: BatchQueue object holding enqueued tensor_dicts.
|
|
create_model_fn: A function to create the DetectionModel.
|
|
train_config: a train_pb2.TrainConfig protobuf.
|
|
"""
|
|
detection_model = create_model_fn()
|
|
(images, _, groundtruth_boxes_list, groundtruth_classes_list,
|
|
groundtruth_masks_list, groundtruth_keypoints_list,
|
|
groundtruth_weights_list) = get_inputs(
|
|
input_queue,
|
|
detection_model.num_classes,
|
|
train_config.merge_multiple_label_boxes,
|
|
train_config.use_multiclass_scores)
|
|
|
|
preprocessed_images = []
|
|
true_image_shapes = []
|
|
for image in images:
|
|
resized_image, true_image_shape = detection_model.preprocess(image)
|
|
preprocessed_images.append(resized_image)
|
|
true_image_shapes.append(true_image_shape)
|
|
|
|
images = tf.concat(preprocessed_images, 0)
|
|
true_image_shapes = tf.concat(true_image_shapes, 0)
|
|
|
|
if any(mask is None for mask in groundtruth_masks_list):
|
|
groundtruth_masks_list = None
|
|
if any(keypoints is None for keypoints in groundtruth_keypoints_list):
|
|
groundtruth_keypoints_list = None
|
|
|
|
detection_model.provide_groundtruth(
|
|
groundtruth_boxes_list,
|
|
groundtruth_classes_list,
|
|
groundtruth_masks_list,
|
|
groundtruth_keypoints_list,
|
|
groundtruth_weights_list=groundtruth_weights_list)
|
|
prediction_dict = detection_model.predict(images, true_image_shapes)
|
|
|
|
losses_dict = detection_model.loss(prediction_dict, true_image_shapes)
|
|
for loss_tensor in losses_dict.values():
|
|
tf.losses.add_loss(loss_tensor)
|
|
|
|
|
|
def train(create_tensor_dict_fn,
|
|
create_model_fn,
|
|
train_config,
|
|
master,
|
|
task,
|
|
num_clones,
|
|
worker_replicas,
|
|
clone_on_cpu,
|
|
ps_tasks,
|
|
worker_job_name,
|
|
is_chief,
|
|
train_dir,
|
|
graph_hook_fn=None):
|
|
"""Training function for detection models.
|
|
|
|
Args:
|
|
create_tensor_dict_fn: a function to create a tensor input dictionary.
|
|
create_model_fn: a function that creates a DetectionModel and generates
|
|
losses.
|
|
train_config: a train_pb2.TrainConfig protobuf.
|
|
master: BNS name of the TensorFlow master to use.
|
|
task: The task id of this training instance.
|
|
num_clones: The number of clones to run per machine.
|
|
worker_replicas: The number of work replicas to train with.
|
|
clone_on_cpu: True if clones should be forced to run on CPU.
|
|
ps_tasks: Number of parameter server tasks.
|
|
worker_job_name: Name of the worker job.
|
|
is_chief: Whether this replica is the chief replica.
|
|
train_dir: Directory to write checkpoints and training summaries to.
|
|
graph_hook_fn: Optional function that is called after the inference graph is
|
|
built (before optimization). This is helpful to perform additional changes
|
|
to the training graph such as adding FakeQuant ops. The function should
|
|
modify the default graph.
|
|
|
|
Raises:
|
|
ValueError: If both num_clones > 1 and train_config.sync_replicas is true.
|
|
"""
|
|
|
|
detection_model = create_model_fn()
|
|
data_augmentation_options = [
|
|
preprocessor_builder.build(step)
|
|
for step in train_config.data_augmentation_options]
|
|
|
|
with tf.Graph().as_default():
|
|
# Build a configuration specifying multi-GPU and multi-replicas.
|
|
deploy_config = model_deploy.DeploymentConfig(
|
|
num_clones=num_clones,
|
|
clone_on_cpu=clone_on_cpu,
|
|
replica_id=task,
|
|
num_replicas=worker_replicas,
|
|
num_ps_tasks=ps_tasks,
|
|
worker_job_name=worker_job_name)
|
|
|
|
# Place the global step on the device storing the variables.
|
|
with tf.device(deploy_config.variables_device()):
|
|
global_step = slim.create_global_step()
|
|
|
|
if num_clones != 1 and train_config.sync_replicas:
|
|
raise ValueError('In Synchronous SGD mode num_clones must ',
|
|
'be 1. Found num_clones: {}'.format(num_clones))
|
|
batch_size = train_config.batch_size // num_clones
|
|
if train_config.sync_replicas:
|
|
batch_size //= train_config.replicas_to_aggregate
|
|
|
|
with tf.device(deploy_config.inputs_device()):
|
|
input_queue = create_input_queue(
|
|
batch_size, create_tensor_dict_fn,
|
|
train_config.batch_queue_capacity,
|
|
train_config.num_batch_queue_threads,
|
|
train_config.prefetch_queue_capacity, data_augmentation_options)
|
|
|
|
# Gather initial summaries.
|
|
# TODO(rathodv): See if summaries can be added/extracted from global tf
|
|
# collections so that they don't have to be passed around.
|
|
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
|
|
global_summaries = set([])
|
|
|
|
model_fn = functools.partial(_create_losses,
|
|
create_model_fn=create_model_fn,
|
|
train_config=train_config)
|
|
clones = model_deploy.create_clones(deploy_config, model_fn, [input_queue])
|
|
first_clone_scope = clones[0].scope
|
|
|
|
if graph_hook_fn:
|
|
with tf.device(deploy_config.variables_device()):
|
|
graph_hook_fn()
|
|
|
|
# Gather update_ops from the first clone. These contain, for example,
|
|
# the updates for the batch_norm variables created by model_fn.
|
|
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)
|
|
|
|
with tf.device(deploy_config.optimizer_device()):
|
|
training_optimizer, optimizer_summary_vars = optimizer_builder.build(
|
|
train_config.optimizer)
|
|
for var in optimizer_summary_vars:
|
|
tf.summary.scalar(var.op.name, var, family='LearningRate')
|
|
|
|
sync_optimizer = None
|
|
if train_config.sync_replicas:
|
|
training_optimizer = tf.train.SyncReplicasOptimizer(
|
|
training_optimizer,
|
|
replicas_to_aggregate=train_config.replicas_to_aggregate,
|
|
total_num_replicas=worker_replicas)
|
|
sync_optimizer = training_optimizer
|
|
|
|
with tf.device(deploy_config.optimizer_device()):
|
|
regularization_losses = (None if train_config.add_regularization_loss
|
|
else [])
|
|
total_loss, grads_and_vars = model_deploy.optimize_clones(
|
|
clones, training_optimizer,
|
|
regularization_losses=regularization_losses)
|
|
total_loss = tf.check_numerics(total_loss, 'LossTensor is inf or nan.')
|
|
|
|
# Optionally multiply bias gradients by train_config.bias_grad_multiplier.
|
|
if train_config.bias_grad_multiplier:
|
|
biases_regex_list = ['.*/biases']
|
|
grads_and_vars = variables_helper.multiply_gradients_matching_regex(
|
|
grads_and_vars,
|
|
biases_regex_list,
|
|
multiplier=train_config.bias_grad_multiplier)
|
|
|
|
# Optionally freeze some layers by setting their gradients to be zero.
|
|
if train_config.freeze_variables:
|
|
grads_and_vars = variables_helper.freeze_gradients_matching_regex(
|
|
grads_and_vars, train_config.freeze_variables)
|
|
|
|
# Optionally clip gradients
|
|
if train_config.gradient_clipping_by_norm > 0:
|
|
with tf.name_scope('clip_grads'):
|
|
grads_and_vars = slim.learning.clip_gradient_norms(
|
|
grads_and_vars, train_config.gradient_clipping_by_norm)
|
|
|
|
# Create gradient updates.
|
|
grad_updates = training_optimizer.apply_gradients(grads_and_vars,
|
|
global_step=global_step)
|
|
update_ops.append(grad_updates)
|
|
update_op = tf.group(*update_ops, name='update_barrier')
|
|
with tf.control_dependencies([update_op]):
|
|
train_tensor = tf.identity(total_loss, name='train_op')
|
|
|
|
# Add summaries.
|
|
for model_var in slim.get_model_variables():
|
|
global_summaries.add(tf.summary.histogram('ModelVars/' +
|
|
model_var.op.name, model_var))
|
|
for loss_tensor in tf.losses.get_losses():
|
|
global_summaries.add(tf.summary.scalar('Losses/' + loss_tensor.op.name,
|
|
loss_tensor))
|
|
global_summaries.add(
|
|
tf.summary.scalar('Losses/TotalLoss', tf.losses.get_total_loss()))
|
|
|
|
# Add the summaries from the first clone. These contain the summaries
|
|
# created by model_fn and either optimize_clones() or _gather_clone_loss().
|
|
summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
|
|
first_clone_scope))
|
|
summaries |= global_summaries
|
|
|
|
# Merge all summaries together.
|
|
summary_op = tf.summary.merge(list(summaries), name='summary_op')
|
|
|
|
# Soft placement allows placing on CPU ops without GPU implementation.
|
|
session_config = tf.ConfigProto(allow_soft_placement=True,
|
|
log_device_placement=False)
|
|
|
|
# Save checkpoints regularly.
|
|
keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
|
|
saver = tf.train.Saver(
|
|
keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
|
|
|
|
# Create ops required to initialize the model from a given checkpoint.
|
|
init_fn = None
|
|
if train_config.fine_tune_checkpoint:
|
|
if not train_config.fine_tune_checkpoint_type:
|
|
# train_config.from_detection_checkpoint field is deprecated. For
|
|
# backward compatibility, fine_tune_checkpoint_type is set based on
|
|
# from_detection_checkpoint.
|
|
if train_config.from_detection_checkpoint:
|
|
train_config.fine_tune_checkpoint_type = 'detection'
|
|
else:
|
|
train_config.fine_tune_checkpoint_type = 'classification'
|
|
var_map = detection_model.restore_map(
|
|
fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
|
|
load_all_detection_checkpoint_vars=(
|
|
train_config.load_all_detection_checkpoint_vars))
|
|
available_var_map = (variables_helper.
|
|
get_variables_available_in_checkpoint(
|
|
var_map, train_config.fine_tune_checkpoint,
|
|
include_global_step=False))
|
|
init_saver = tf.train.Saver(available_var_map)
|
|
def initializer_fn(sess):
|
|
init_saver.restore(sess, train_config.fine_tune_checkpoint)
|
|
init_fn = initializer_fn
|
|
|
|
slim.learning.train(
|
|
train_tensor,
|
|
logdir=train_dir,
|
|
master=master,
|
|
is_chief=is_chief,
|
|
session_config=session_config,
|
|
startup_delay_steps=train_config.startup_delay_steps,
|
|
init_fn=init_fn,
|
|
summary_op=summary_op,
|
|
number_of_steps=(
|
|
train_config.num_steps if train_config.num_steps else None),
|
|
save_summaries_secs=120,
|
|
sync_optimizer=sync_optimizer,
|
|
saver=saver)
|