You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

159 lines
6.1 KiB

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tensorflow Example proto parser for data loading.
A parser to decode data containing serialized tensorflow.Example
protos into materialized tensors (numpy arrays).
"""
import numpy as np
from object_detection.core import data_parser
from object_detection.core import standard_fields as fields
class FloatParser(data_parser.DataToNumpyParser):
"""Tensorflow Example float parser."""
def __init__(self, field_name):
self.field_name = field_name
def parse(self, tf_example):
return np.array(
tf_example.features.feature[self.field_name].float_list.value,
dtype=np.float).transpose() if tf_example.features.feature[
self.field_name].HasField("float_list") else None
class StringParser(data_parser.DataToNumpyParser):
"""Tensorflow Example string parser."""
def __init__(self, field_name):
self.field_name = field_name
def parse(self, tf_example):
return "".join(tf_example.features.feature[self.field_name]
.bytes_list.value) if tf_example.features.feature[
self.field_name].HasField("bytes_list") else None
class Int64Parser(data_parser.DataToNumpyParser):
"""Tensorflow Example int64 parser."""
def __init__(self, field_name):
self.field_name = field_name
def parse(self, tf_example):
return np.array(
tf_example.features.feature[self.field_name].int64_list.value,
dtype=np.int64).transpose() if tf_example.features.feature[
self.field_name].HasField("int64_list") else None
class BoundingBoxParser(data_parser.DataToNumpyParser):
"""Tensorflow Example bounding box parser."""
def __init__(self, xmin_field_name, ymin_field_name, xmax_field_name,
ymax_field_name):
self.field_names = [
ymin_field_name, xmin_field_name, ymax_field_name, xmax_field_name
]
def parse(self, tf_example):
result = []
parsed = True
for field_name in self.field_names:
result.append(tf_example.features.feature[field_name].float_list.value)
parsed &= (
tf_example.features.feature[field_name].HasField("float_list"))
return np.array(result).transpose() if parsed else None
class TfExampleDetectionAndGTParser(data_parser.DataToNumpyParser):
"""Tensorflow Example proto parser."""
def __init__(self):
self.items_to_handlers = {
fields.DetectionResultFields.key:
StringParser(fields.TfExampleFields.source_id),
# Object ground truth boxes and classes.
fields.InputDataFields.groundtruth_boxes: (BoundingBoxParser(
fields.TfExampleFields.object_bbox_xmin,
fields.TfExampleFields.object_bbox_ymin,
fields.TfExampleFields.object_bbox_xmax,
fields.TfExampleFields.object_bbox_ymax)),
fields.InputDataFields.groundtruth_classes: (
Int64Parser(fields.TfExampleFields.object_class_label)),
# Object detections.
fields.DetectionResultFields.detection_boxes: (BoundingBoxParser(
fields.TfExampleFields.detection_bbox_xmin,
fields.TfExampleFields.detection_bbox_ymin,
fields.TfExampleFields.detection_bbox_xmax,
fields.TfExampleFields.detection_bbox_ymax)),
fields.DetectionResultFields.detection_classes: (
Int64Parser(fields.TfExampleFields.detection_class_label)),
fields.DetectionResultFields.detection_scores: (
FloatParser(fields.TfExampleFields.detection_score)),
}
self.optional_items_to_handlers = {
fields.InputDataFields.groundtruth_difficult:
Int64Parser(fields.TfExampleFields.object_difficult),
fields.InputDataFields.groundtruth_group_of:
Int64Parser(fields.TfExampleFields.object_group_of),
fields.InputDataFields.groundtruth_image_classes:
Int64Parser(fields.TfExampleFields.image_class_label),
}
def parse(self, tf_example):
"""Parses tensorflow example and returns a tensor dictionary.
Args:
tf_example: a tf.Example object.
Returns:
A dictionary of the following numpy arrays:
fields.DetectionResultFields.source_id - string containing original image
id.
fields.InputDataFields.groundtruth_boxes - a numpy array containing
groundtruth boxes.
fields.InputDataFields.groundtruth_classes - a numpy array containing
groundtruth classes.
fields.InputDataFields.groundtruth_group_of - a numpy array containing
groundtruth group of flag (optional, None if not specified).
fields.InputDataFields.groundtruth_difficult - a numpy array containing
groundtruth difficult flag (optional, None if not specified).
fields.InputDataFields.groundtruth_image_classes - a numpy array
containing groundtruth image-level labels.
fields.DetectionResultFields.detection_boxes - a numpy array containing
detection boxes.
fields.DetectionResultFields.detection_classes - a numpy array containing
detection class labels.
fields.DetectionResultFields.detection_scores - a numpy array containing
detection scores.
Returns None if tf.Example was not parsed or non-optional fields were not
found.
"""
results_dict = {}
parsed = True
for key, parser in self.items_to_handlers.items():
results_dict[key] = parser.parse(tf_example)
parsed &= (results_dict[key] is not None)
for key, parser in self.optional_items_to_handlers.items():
results_dict[key] = parser.parse(tf_example)
return results_dict if parsed else None