|
from flask import Flask, request, Response
|
|
from flask_restful import Resource, Api
|
|
|
|
import os
|
|
from object_detection.utils import label_map_util
|
|
from object_detection.utils import visualization_utils as vis_util
|
|
from object_detection.utils import ops as utils_ops
|
|
from PIL import Image
|
|
import base64
|
|
import io
|
|
import json
|
|
|
|
import tensorflow as tf
|
|
import sys
|
|
import numpy as np
|
|
from flask import Flask, send_from_directory
|
|
from flask_restful import Api
|
|
from flask_cors import CORS, cross_origin
|
|
|
|
app = Flask(__name__)
|
|
api = Api(app)
|
|
app.config['SECRET_KEY'] = 'the quick brown fox jumps over the lazy dog'
|
|
app.config['CORS_HEADERS'] = 'Content-Type'
|
|
|
|
cors = CORS(app, resources={r"/foo": {"origins": "*"}})
|
|
switches = {"coco":1, "damage":1}
|
|
COCO_MODEL_NAME = "rfcn_resnet101_coco_2018_01_28"
|
|
PATH_TO_FROZEN_COCO_GRAPH = 'modules/'+COCO_MODEL_NAME + '/frozen_inference_graph.pb'
|
|
PATH_TO_FROZEN_DAMAGE_GRAPH = 'modules/trainedModels/ssd_mobilenet_RoadDamageDetector.pb'
|
|
linux_def = {"detection_boxes":[(106, 188, 480, 452)],"detection_scores":[0.99],"detection_classes":[1]}
|
|
detection_graph_coco = None
|
|
detection_graph_damage = None
|
|
if sys.platform == "win32":
|
|
detection_graph_coco = tf.Graph()
|
|
detection_graph_damage = tf.Graph()
|
|
with detection_graph_coco.as_default():
|
|
od_graph_def = tf.GraphDef()
|
|
with tf.gfile.GFile(PATH_TO_FROZEN_COCO_GRAPH, 'rb') as fid:
|
|
serialized_graph = fid.read()
|
|
od_graph_def.ParseFromString(serialized_graph)
|
|
tf.import_graph_def(od_graph_def, name='')
|
|
with detection_graph_damage.as_default():
|
|
od_graph_def = tf.GraphDef()
|
|
with tf.gfile.GFile(PATH_TO_FROZEN_DAMAGE_GRAPH, 'rb') as fid:
|
|
serialized_graph = fid.read()
|
|
od_graph_def.ParseFromString(serialized_graph)
|
|
tf.import_graph_def(od_graph_def, name='')
|
|
|
|
def load_image_into_numpy_array(image):
|
|
(im_width, im_height) = image.size
|
|
return np.array(image.getdata()).reshape(
|
|
(im_height, im_width, 3)).astype(np.uint8)
|
|
|
|
def run_inference_for_single_image(image, graph,type):
|
|
global switches
|
|
global sess_coco
|
|
global sess_damage
|
|
if not sys.platform == "win32":
|
|
return linux_def
|
|
with graph.as_default():
|
|
if(switches[type]):
|
|
if type == "coco":
|
|
sess_coco = tf.Session()
|
|
elif type == "damage":
|
|
sess_damage = tf.Session()
|
|
switches[type] = 0
|
|
if type == "coco":
|
|
ops = tf.get_default_graph().get_operations()
|
|
all_tensor_names = {output.name for op in ops for output in op.outputs}
|
|
tensor_dict = {}
|
|
for key in [
|
|
'num_detections', 'detection_boxes', 'detection_scores',
|
|
'detection_classes', 'detection_masks'
|
|
]:
|
|
tensor_name = key + ':0'
|
|
if tensor_name in all_tensor_names:
|
|
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
|
|
tensor_name)
|
|
if 'detection_masks' in tensor_dict:
|
|
# The following processing is only for single image
|
|
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
|
|
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
|
|
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
|
|
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
|
|
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
|
|
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
|
|
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
|
|
detection_masks, detection_boxes, image.shape[1], image.shape[2])
|
|
detection_masks_reframed = tf.cast(
|
|
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
|
|
# Follow the convention by adding back the batch dimension
|
|
tensor_dict['detection_masks'] = tf.expand_dims(
|
|
detection_masks_reframed, 0)
|
|
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
|
|
# Run inference
|
|
output_dict = sess_coco.run(tensor_dict,
|
|
feed_dict={image_tensor: image})
|
|
# all outputs are float32 numpy arrays, so convert types as appropriate
|
|
output_dict['num_detections'] = int(output_dict['num_detections'][0])
|
|
output_dict['detection_classes'] = output_dict[
|
|
'detection_classes'][0].astype(np.int64)
|
|
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
|
|
output_dict['detection_scores'] = output_dict['detection_scores'][0]
|
|
if 'detection_masks' in output_dict:
|
|
output_dict['detection_masks'] = output_dict['detection_masks'][0]
|
|
elif type=="damage":
|
|
image_tensor = graph.get_tensor_by_name('image_tensor:0')
|
|
# Each box represents a part of the image where a particular object was detected.
|
|
detection_boxes = graph.get_tensor_by_name('detection_boxes:0')
|
|
# Each score represent how level of confidence for each of the objects.
|
|
# Score is shown on the result image, together with the class label.
|
|
detection_scores = graph.get_tensor_by_name('detection_scores:0')
|
|
detection_classes = graph.get_tensor_by_name('detection_classes:0')
|
|
num_detections = graph.get_tensor_by_name('num_detections:0')
|
|
# Actual detection.
|
|
(boxes, scores, classes, num) = sess_damage.run(
|
|
[detection_boxes, detection_scores, detection_classes, num_detections],
|
|
feed_dict={image_tensor: image})
|
|
|
|
output_dict = {'detection_classes': np.squeeze(classes).astype(np.int32), 'detection_scores': np.squeeze(scores)}
|
|
|
|
return output_dict
|
|
|
|
|
|
class Process(Resource):
|
|
def post(self):
|
|
base64_img = request.form['img']
|
|
image = Image.open(io.BytesIO(base64.b64decode(base64_img)))
|
|
type = request.form["type"]
|
|
image_np = load_image_into_numpy_array(image)
|
|
image_np_expanded = np.expand_dims(image_np, axis=0)
|
|
if type == "coco":
|
|
output_dict = run_inference_for_single_image(image_np_expanded, detection_graph_coco,type)
|
|
elif type == "damage":
|
|
output_dict = run_inference_for_single_image(image_np_expanded, detection_graph_damage,type)
|
|
|
|
|
|
return json.dumps(output_dict,cls=NumpyEncoder)
|
|
|
|
|
|
class NumpyEncoder(json.JSONEncoder):
|
|
def default(self, obj):
|
|
if isinstance(obj, np.ndarray):
|
|
return obj.tolist()
|
|
return json.JSONEncoder.default(self, obj)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
context = ('encryption/mycity.crt', 'encryption/mycity-decrypted.key')
|
|
api.add_resource(Process, '/ai', '/ai/')
|
|
|
|
app.run(host='0.0.0.0', port=5001, ssl_context=context, debug=False)
|
|
|
|
|