|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Common utility functions for evaluation."""
|
|
import collections
|
|
import os
|
|
import re
|
|
import time
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from object_detection.core import box_list
|
|
from object_detection.core import box_list_ops
|
|
from object_detection.core import keypoint_ops
|
|
from object_detection.core import standard_fields as fields
|
|
from object_detection.metrics import coco_evaluation
|
|
from object_detection.utils import label_map_util
|
|
from object_detection.utils import object_detection_evaluation
|
|
from object_detection.utils import ops
|
|
from object_detection.utils import shape_utils
|
|
from object_detection.utils import visualization_utils as vis_utils
|
|
|
|
slim = tf.contrib.slim
|
|
|
|
# A dictionary of metric names to classes that implement the metric. The classes
|
|
# in the dictionary must implement
|
|
# utils.object_detection_evaluation.DetectionEvaluator interface.
|
|
EVAL_METRICS_CLASS_DICT = {
|
|
'coco_detection_metrics':
|
|
coco_evaluation.CocoDetectionEvaluator,
|
|
'coco_mask_metrics':
|
|
coco_evaluation.CocoMaskEvaluator,
|
|
'oid_challenge_detection_metrics':
|
|
object_detection_evaluation.OpenImagesDetectionChallengeEvaluator,
|
|
'oid_challenge_segmentation_metrics':
|
|
object_detection_evaluation
|
|
.OpenImagesInstanceSegmentationChallengeEvaluator,
|
|
'pascal_voc_detection_metrics':
|
|
object_detection_evaluation.PascalDetectionEvaluator,
|
|
'weighted_pascal_voc_detection_metrics':
|
|
object_detection_evaluation.WeightedPascalDetectionEvaluator,
|
|
'precision_at_recall_detection_metrics':
|
|
object_detection_evaluation.PrecisionAtRecallDetectionEvaluator,
|
|
'pascal_voc_instance_segmentation_metrics':
|
|
object_detection_evaluation.PascalInstanceSegmentationEvaluator,
|
|
'weighted_pascal_voc_instance_segmentation_metrics':
|
|
object_detection_evaluation.WeightedPascalInstanceSegmentationEvaluator,
|
|
'oid_V2_detection_metrics':
|
|
object_detection_evaluation.OpenImagesDetectionEvaluator,
|
|
}
|
|
|
|
EVAL_DEFAULT_METRIC = 'coco_detection_metrics'
|
|
|
|
|
|
def write_metrics(metrics, global_step, summary_dir):
|
|
"""Write metrics to a summary directory.
|
|
|
|
Args:
|
|
metrics: A dictionary containing metric names and values.
|
|
global_step: Global step at which the metrics are computed.
|
|
summary_dir: Directory to write tensorflow summaries to.
|
|
"""
|
|
tf.logging.info('Writing metrics to tf summary.')
|
|
summary_writer = tf.summary.FileWriterCache.get(summary_dir)
|
|
for key in sorted(metrics):
|
|
summary = tf.Summary(value=[
|
|
tf.Summary.Value(tag=key, simple_value=metrics[key]),
|
|
])
|
|
summary_writer.add_summary(summary, global_step)
|
|
tf.logging.info('%s: %f', key, metrics[key])
|
|
tf.logging.info('Metrics written to tf summary.')
|
|
|
|
|
|
# TODO(rathodv): Add tests.
|
|
def visualize_detection_results(result_dict,
|
|
tag,
|
|
global_step,
|
|
categories,
|
|
summary_dir='',
|
|
export_dir='',
|
|
agnostic_mode=False,
|
|
show_groundtruth=False,
|
|
groundtruth_box_visualization_color='black',
|
|
min_score_thresh=.5,
|
|
max_num_predictions=20,
|
|
skip_scores=False,
|
|
skip_labels=False,
|
|
keep_image_id_for_visualization_export=False):
|
|
"""Visualizes detection results and writes visualizations to image summaries.
|
|
|
|
This function visualizes an image with its detected bounding boxes and writes
|
|
to image summaries which can be viewed on tensorboard. It optionally also
|
|
writes images to a directory. In the case of missing entry in the label map,
|
|
unknown class name in the visualization is shown as "N/A".
|
|
|
|
Args:
|
|
result_dict: a dictionary holding groundtruth and detection
|
|
data corresponding to each image being evaluated. The following keys
|
|
are required:
|
|
'original_image': a numpy array representing the image with shape
|
|
[1, height, width, 3] or [1, height, width, 1]
|
|
'detection_boxes': a numpy array of shape [N, 4]
|
|
'detection_scores': a numpy array of shape [N]
|
|
'detection_classes': a numpy array of shape [N]
|
|
The following keys are optional:
|
|
'groundtruth_boxes': a numpy array of shape [N, 4]
|
|
'groundtruth_keypoints': a numpy array of shape [N, num_keypoints, 2]
|
|
Detections are assumed to be provided in decreasing order of score and for
|
|
display, and we assume that scores are probabilities between 0 and 1.
|
|
tag: tensorboard tag (string) to associate with image.
|
|
global_step: global step at which the visualization are generated.
|
|
categories: a list of dictionaries representing all possible categories.
|
|
Each dict in this list has the following keys:
|
|
'id': (required) an integer id uniquely identifying this category
|
|
'name': (required) string representing category name
|
|
e.g., 'cat', 'dog', 'pizza'
|
|
'supercategory': (optional) string representing the supercategory
|
|
e.g., 'animal', 'vehicle', 'food', etc
|
|
summary_dir: the output directory to which the image summaries are written.
|
|
export_dir: the output directory to which images are written. If this is
|
|
empty (default), then images are not exported.
|
|
agnostic_mode: boolean (default: False) controlling whether to evaluate in
|
|
class-agnostic mode or not.
|
|
show_groundtruth: boolean (default: False) controlling whether to show
|
|
groundtruth boxes in addition to detected boxes
|
|
groundtruth_box_visualization_color: box color for visualizing groundtruth
|
|
boxes
|
|
min_score_thresh: minimum score threshold for a box to be visualized
|
|
max_num_predictions: maximum number of detections to visualize
|
|
skip_scores: whether to skip score when drawing a single detection
|
|
skip_labels: whether to skip label when drawing a single detection
|
|
keep_image_id_for_visualization_export: whether to keep image identifier in
|
|
filename when exported to export_dir
|
|
Raises:
|
|
ValueError: if result_dict does not contain the expected keys (i.e.,
|
|
'original_image', 'detection_boxes', 'detection_scores',
|
|
'detection_classes')
|
|
"""
|
|
detection_fields = fields.DetectionResultFields
|
|
input_fields = fields.InputDataFields
|
|
if not set([
|
|
input_fields.original_image,
|
|
detection_fields.detection_boxes,
|
|
detection_fields.detection_scores,
|
|
detection_fields.detection_classes,
|
|
]).issubset(set(result_dict.keys())):
|
|
raise ValueError('result_dict does not contain all expected keys.')
|
|
if show_groundtruth and input_fields.groundtruth_boxes not in result_dict:
|
|
raise ValueError('If show_groundtruth is enabled, result_dict must contain '
|
|
'groundtruth_boxes.')
|
|
tf.logging.info('Creating detection visualizations.')
|
|
category_index = label_map_util.create_category_index(categories)
|
|
|
|
image = np.squeeze(result_dict[input_fields.original_image], axis=0)
|
|
if image.shape[2] == 1: # If one channel image, repeat in RGB.
|
|
image = np.tile(image, [1, 1, 3])
|
|
detection_boxes = result_dict[detection_fields.detection_boxes]
|
|
detection_scores = result_dict[detection_fields.detection_scores]
|
|
detection_classes = np.int32((result_dict[
|
|
detection_fields.detection_classes]))
|
|
detection_keypoints = result_dict.get(detection_fields.detection_keypoints)
|
|
detection_masks = result_dict.get(detection_fields.detection_masks)
|
|
detection_boundaries = result_dict.get(detection_fields.detection_boundaries)
|
|
|
|
# Plot groundtruth underneath detections
|
|
if show_groundtruth:
|
|
groundtruth_boxes = result_dict[input_fields.groundtruth_boxes]
|
|
groundtruth_keypoints = result_dict.get(input_fields.groundtruth_keypoints)
|
|
vis_utils.visualize_boxes_and_labels_on_image_array(
|
|
image=image,
|
|
boxes=groundtruth_boxes,
|
|
classes=None,
|
|
scores=None,
|
|
category_index=category_index,
|
|
keypoints=groundtruth_keypoints,
|
|
use_normalized_coordinates=False,
|
|
max_boxes_to_draw=None,
|
|
groundtruth_box_visualization_color=groundtruth_box_visualization_color)
|
|
vis_utils.visualize_boxes_and_labels_on_image_array(
|
|
image,
|
|
detection_boxes,
|
|
detection_classes,
|
|
detection_scores,
|
|
category_index,
|
|
instance_masks=detection_masks,
|
|
instance_boundaries=detection_boundaries,
|
|
keypoints=detection_keypoints,
|
|
use_normalized_coordinates=False,
|
|
max_boxes_to_draw=max_num_predictions,
|
|
min_score_thresh=min_score_thresh,
|
|
agnostic_mode=agnostic_mode,
|
|
skip_scores=skip_scores,
|
|
skip_labels=skip_labels)
|
|
|
|
if export_dir:
|
|
if keep_image_id_for_visualization_export and result_dict[fields.
|
|
InputDataFields()
|
|
.key]:
|
|
export_path = os.path.join(export_dir, 'export-{}-{}.png'.format(
|
|
tag, result_dict[fields.InputDataFields().key]))
|
|
else:
|
|
export_path = os.path.join(export_dir, 'export-{}.png'.format(tag))
|
|
vis_utils.save_image_array_as_png(image, export_path)
|
|
|
|
summary = tf.Summary(value=[
|
|
tf.Summary.Value(
|
|
tag=tag,
|
|
image=tf.Summary.Image(
|
|
encoded_image_string=vis_utils.encode_image_array_as_png_str(
|
|
image)))
|
|
])
|
|
summary_writer = tf.summary.FileWriterCache.get(summary_dir)
|
|
summary_writer.add_summary(summary, global_step)
|
|
|
|
tf.logging.info('Detection visualizations written to summary with tag %s.',
|
|
tag)
|
|
|
|
|
|
def _run_checkpoint_once(tensor_dict,
|
|
evaluators=None,
|
|
batch_processor=None,
|
|
checkpoint_dirs=None,
|
|
variables_to_restore=None,
|
|
restore_fn=None,
|
|
num_batches=1,
|
|
master='',
|
|
save_graph=False,
|
|
save_graph_dir='',
|
|
losses_dict=None,
|
|
eval_export_path=None,
|
|
process_metrics_fn=None):
|
|
"""Evaluates metrics defined in evaluators and returns summaries.
|
|
|
|
This function loads the latest checkpoint in checkpoint_dirs and evaluates
|
|
all metrics defined in evaluators. The metrics are processed in batch by the
|
|
batch_processor.
|
|
|
|
Args:
|
|
tensor_dict: a dictionary holding tensors representing a batch of detections
|
|
and corresponding groundtruth annotations.
|
|
evaluators: a list of object of type DetectionEvaluator to be used for
|
|
evaluation. Note that the metric names produced by different evaluators
|
|
must be unique.
|
|
batch_processor: a function taking four arguments:
|
|
1. tensor_dict: the same tensor_dict that is passed in as the first
|
|
argument to this function.
|
|
2. sess: a tensorflow session
|
|
3. batch_index: an integer representing the index of the batch amongst
|
|
all batches
|
|
By default, batch_processor is None, which defaults to running:
|
|
return sess.run(tensor_dict)
|
|
To skip an image, it suffices to return an empty dictionary in place of
|
|
result_dict.
|
|
checkpoint_dirs: list of directories to load into an EnsembleModel. If it
|
|
has only one directory, EnsembleModel will not be used --
|
|
a DetectionModel
|
|
will be instantiated directly. Not used if restore_fn is set.
|
|
variables_to_restore: None, or a dictionary mapping variable names found in
|
|
a checkpoint to model variables. The dictionary would normally be
|
|
generated by creating a tf.train.ExponentialMovingAverage object and
|
|
calling its variables_to_restore() method. Not used if restore_fn is set.
|
|
restore_fn: None, or a function that takes a tf.Session object and correctly
|
|
restores all necessary variables from the correct checkpoint file. If
|
|
None, attempts to restore from the first directory in checkpoint_dirs.
|
|
num_batches: the number of batches to use for evaluation.
|
|
master: the location of the Tensorflow session.
|
|
save_graph: whether or not the Tensorflow graph is stored as a pbtxt file.
|
|
save_graph_dir: where to store the Tensorflow graph on disk. If save_graph
|
|
is True this must be non-empty.
|
|
losses_dict: optional dictionary of scalar detection losses.
|
|
eval_export_path: Path for saving a json file that contains the detection
|
|
results in json format.
|
|
process_metrics_fn: a callback called with evaluation results after each
|
|
evaluation is done. It could be used e.g. to back up checkpoints with
|
|
best evaluation scores, or to call an external system to update evaluation
|
|
results in order to drive best hyper-parameter search. Parameters are:
|
|
int checkpoint_number, Dict[str, ObjectDetectionEvalMetrics] metrics,
|
|
str checkpoint_file path.
|
|
|
|
Returns:
|
|
global_step: the count of global steps.
|
|
all_evaluator_metrics: A dictionary containing metric names and values.
|
|
|
|
Raises:
|
|
ValueError: if restore_fn is None and checkpoint_dirs doesn't have at least
|
|
one element.
|
|
ValueError: if save_graph is True and save_graph_dir is not defined.
|
|
"""
|
|
if save_graph and not save_graph_dir:
|
|
raise ValueError('`save_graph_dir` must be defined.')
|
|
sess = tf.Session(master, graph=tf.get_default_graph())
|
|
sess.run(tf.global_variables_initializer())
|
|
sess.run(tf.local_variables_initializer())
|
|
sess.run(tf.tables_initializer())
|
|
checkpoint_file = None
|
|
if restore_fn:
|
|
restore_fn(sess)
|
|
else:
|
|
if not checkpoint_dirs:
|
|
raise ValueError('`checkpoint_dirs` must have at least one entry.')
|
|
checkpoint_file = tf.train.latest_checkpoint(checkpoint_dirs[0])
|
|
saver = tf.train.Saver(variables_to_restore)
|
|
saver.restore(sess, checkpoint_file)
|
|
|
|
if save_graph:
|
|
tf.train.write_graph(sess.graph_def, save_graph_dir, 'eval.pbtxt')
|
|
|
|
counters = {'skipped': 0, 'success': 0}
|
|
aggregate_result_losses_dict = collections.defaultdict(list)
|
|
with tf.contrib.slim.queues.QueueRunners(sess):
|
|
try:
|
|
for batch in range(int(num_batches)):
|
|
if (batch + 1) % 100 == 0:
|
|
tf.logging.info('Running eval ops batch %d/%d', batch + 1,
|
|
num_batches)
|
|
if not batch_processor:
|
|
try:
|
|
if not losses_dict:
|
|
losses_dict = {}
|
|
result_dict, result_losses_dict = sess.run([tensor_dict,
|
|
losses_dict])
|
|
counters['success'] += 1
|
|
except tf.errors.InvalidArgumentError:
|
|
tf.logging.info('Skipping image')
|
|
counters['skipped'] += 1
|
|
result_dict = {}
|
|
else:
|
|
result_dict, result_losses_dict = batch_processor(
|
|
tensor_dict, sess, batch, counters, losses_dict=losses_dict)
|
|
if not result_dict:
|
|
continue
|
|
for key, value in iter(result_losses_dict.items()):
|
|
aggregate_result_losses_dict[key].append(value)
|
|
for evaluator in evaluators:
|
|
# TODO(b/65130867): Use image_id tensor once we fix the input data
|
|
# decoders to return correct image_id.
|
|
# TODO(akuznetsa): result_dict contains batches of images, while
|
|
# add_single_ground_truth_image_info expects a single image. Fix
|
|
if (isinstance(result_dict, dict) and
|
|
fields.InputDataFields.key in result_dict and
|
|
result_dict[fields.InputDataFields.key]):
|
|
image_id = result_dict[fields.InputDataFields.key]
|
|
else:
|
|
image_id = batch
|
|
evaluator.add_single_ground_truth_image_info(
|
|
image_id=image_id, groundtruth_dict=result_dict)
|
|
evaluator.add_single_detected_image_info(
|
|
image_id=image_id, detections_dict=result_dict)
|
|
tf.logging.info('Running eval batches done.')
|
|
except tf.errors.OutOfRangeError:
|
|
tf.logging.info('Done evaluating -- epoch limit reached')
|
|
finally:
|
|
# When done, ask the threads to stop.
|
|
tf.logging.info('# success: %d', counters['success'])
|
|
tf.logging.info('# skipped: %d', counters['skipped'])
|
|
all_evaluator_metrics = {}
|
|
if eval_export_path and eval_export_path is not None:
|
|
for evaluator in evaluators:
|
|
if (isinstance(evaluator, coco_evaluation.CocoDetectionEvaluator) or
|
|
isinstance(evaluator, coco_evaluation.CocoMaskEvaluator)):
|
|
tf.logging.info('Started dumping to json file.')
|
|
evaluator.dump_detections_to_json_file(
|
|
json_output_path=eval_export_path)
|
|
tf.logging.info('Finished dumping to json file.')
|
|
for evaluator in evaluators:
|
|
metrics = evaluator.evaluate()
|
|
evaluator.clear()
|
|
if any(key in all_evaluator_metrics for key in metrics):
|
|
raise ValueError('Metric names between evaluators must not collide.')
|
|
all_evaluator_metrics.update(metrics)
|
|
global_step = tf.train.global_step(sess, tf.train.get_global_step())
|
|
|
|
for key, value in iter(aggregate_result_losses_dict.items()):
|
|
all_evaluator_metrics['Losses/' + key] = np.mean(value)
|
|
if process_metrics_fn and checkpoint_file:
|
|
m = re.search(r'model.ckpt-(\d+)$', checkpoint_file)
|
|
if not m:
|
|
tf.logging.error('Failed to parse checkpoint number from: %s',
|
|
checkpoint_file)
|
|
else:
|
|
checkpoint_number = int(m.group(1))
|
|
process_metrics_fn(checkpoint_number, all_evaluator_metrics,
|
|
checkpoint_file)
|
|
sess.close()
|
|
return (global_step, all_evaluator_metrics)
|
|
|
|
|
|
# TODO(rathodv): Add tests.
|
|
def repeated_checkpoint_run(tensor_dict,
|
|
summary_dir,
|
|
evaluators,
|
|
batch_processor=None,
|
|
checkpoint_dirs=None,
|
|
variables_to_restore=None,
|
|
restore_fn=None,
|
|
num_batches=1,
|
|
eval_interval_secs=120,
|
|
max_number_of_evaluations=None,
|
|
max_evaluation_global_step=None,
|
|
master='',
|
|
save_graph=False,
|
|
save_graph_dir='',
|
|
losses_dict=None,
|
|
eval_export_path=None,
|
|
process_metrics_fn=None):
|
|
"""Periodically evaluates desired tensors using checkpoint_dirs or restore_fn.
|
|
|
|
This function repeatedly loads a checkpoint and evaluates a desired
|
|
set of tensors (provided by tensor_dict) and hands the resulting numpy
|
|
arrays to a function result_processor which can be used to further
|
|
process/save/visualize the results.
|
|
|
|
Args:
|
|
tensor_dict: a dictionary holding tensors representing a batch of detections
|
|
and corresponding groundtruth annotations.
|
|
summary_dir: a directory to write metrics summaries.
|
|
evaluators: a list of object of type DetectionEvaluator to be used for
|
|
evaluation. Note that the metric names produced by different evaluators
|
|
must be unique.
|
|
batch_processor: a function taking three arguments:
|
|
1. tensor_dict: the same tensor_dict that is passed in as the first
|
|
argument to this function.
|
|
2. sess: a tensorflow session
|
|
3. batch_index: an integer representing the index of the batch amongst
|
|
all batches
|
|
By default, batch_processor is None, which defaults to running:
|
|
return sess.run(tensor_dict)
|
|
checkpoint_dirs: list of directories to load into a DetectionModel or an
|
|
EnsembleModel if restore_fn isn't set. Also used to determine when to run
|
|
next evaluation. Must have at least one element.
|
|
variables_to_restore: None, or a dictionary mapping variable names found in
|
|
a checkpoint to model variables. The dictionary would normally be
|
|
generated by creating a tf.train.ExponentialMovingAverage object and
|
|
calling its variables_to_restore() method. Not used if restore_fn is set.
|
|
restore_fn: a function that takes a tf.Session object and correctly restores
|
|
all necessary variables from the correct checkpoint file.
|
|
num_batches: the number of batches to use for evaluation.
|
|
eval_interval_secs: the number of seconds between each evaluation run.
|
|
max_number_of_evaluations: the max number of iterations of the evaluation.
|
|
If the value is left as None the evaluation continues indefinitely.
|
|
max_evaluation_global_step: global step when evaluation stops.
|
|
master: the location of the Tensorflow session.
|
|
save_graph: whether or not the Tensorflow graph is saved as a pbtxt file.
|
|
save_graph_dir: where to save on disk the Tensorflow graph. If store_graph
|
|
is True this must be non-empty.
|
|
losses_dict: optional dictionary of scalar detection losses.
|
|
eval_export_path: Path for saving a json file that contains the detection
|
|
results in json format.
|
|
process_metrics_fn: a callback called with evaluation results after each
|
|
evaluation is done. It could be used e.g. to back up checkpoints with
|
|
best evaluation scores, or to call an external system to update evaluation
|
|
results in order to drive best hyper-parameter search. Parameters are:
|
|
int checkpoint_number, Dict[str, ObjectDetectionEvalMetrics] metrics,
|
|
str checkpoint_file path.
|
|
|
|
Returns:
|
|
metrics: A dictionary containing metric names and values in the latest
|
|
evaluation.
|
|
|
|
Raises:
|
|
ValueError: if max_num_of_evaluations is not None or a positive number.
|
|
ValueError: if checkpoint_dirs doesn't have at least one element.
|
|
"""
|
|
if max_number_of_evaluations and max_number_of_evaluations <= 0:
|
|
raise ValueError(
|
|
'`max_number_of_evaluations` must be either None or a positive number.')
|
|
if max_evaluation_global_step and max_evaluation_global_step <= 0:
|
|
raise ValueError(
|
|
'`max_evaluation_global_step` must be either None or positive.')
|
|
|
|
if not checkpoint_dirs:
|
|
raise ValueError('`checkpoint_dirs` must have at least one entry.')
|
|
|
|
last_evaluated_model_path = None
|
|
number_of_evaluations = 0
|
|
while True:
|
|
start = time.time()
|
|
tf.logging.info('Starting evaluation at ' + time.strftime(
|
|
'%Y-%m-%d-%H:%M:%S', time.gmtime()))
|
|
model_path = tf.train.latest_checkpoint(checkpoint_dirs[0])
|
|
if not model_path:
|
|
tf.logging.info('No model found in %s. Will try again in %d seconds',
|
|
checkpoint_dirs[0], eval_interval_secs)
|
|
elif model_path == last_evaluated_model_path:
|
|
tf.logging.info('Found already evaluated checkpoint. Will try again in '
|
|
'%d seconds', eval_interval_secs)
|
|
else:
|
|
last_evaluated_model_path = model_path
|
|
global_step, metrics = _run_checkpoint_once(
|
|
tensor_dict,
|
|
evaluators,
|
|
batch_processor,
|
|
checkpoint_dirs,
|
|
variables_to_restore,
|
|
restore_fn,
|
|
num_batches,
|
|
master,
|
|
save_graph,
|
|
save_graph_dir,
|
|
losses_dict=losses_dict,
|
|
eval_export_path=eval_export_path,
|
|
process_metrics_fn=process_metrics_fn)
|
|
write_metrics(metrics, global_step, summary_dir)
|
|
if (max_evaluation_global_step and
|
|
global_step >= max_evaluation_global_step):
|
|
tf.logging.info('Finished evaluation!')
|
|
break
|
|
number_of_evaluations += 1
|
|
|
|
if (max_number_of_evaluations and
|
|
number_of_evaluations >= max_number_of_evaluations):
|
|
tf.logging.info('Finished evaluation!')
|
|
break
|
|
time_to_next_eval = start + eval_interval_secs - time.time()
|
|
if time_to_next_eval > 0:
|
|
time.sleep(time_to_next_eval)
|
|
|
|
return metrics
|
|
|
|
|
|
def _scale_box_to_absolute(args):
|
|
boxes, image_shape = args
|
|
return box_list_ops.to_absolute_coordinates(
|
|
box_list.BoxList(boxes), image_shape[0], image_shape[1]).get()
|
|
|
|
|
|
def _resize_detection_masks(args):
|
|
detection_boxes, detection_masks, image_shape = args
|
|
detection_masks_reframed = ops.reframe_box_masks_to_image_masks(
|
|
detection_masks, detection_boxes, image_shape[0], image_shape[1])
|
|
return tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)
|
|
|
|
|
|
def _resize_groundtruth_masks(args):
|
|
mask, image_shape = args
|
|
mask = tf.expand_dims(mask, 3)
|
|
mask = tf.image.resize_images(
|
|
mask,
|
|
image_shape,
|
|
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
|
|
align_corners=True)
|
|
return tf.cast(tf.squeeze(mask, 3), tf.uint8)
|
|
|
|
|
|
def _scale_keypoint_to_absolute(args):
|
|
keypoints, image_shape = args
|
|
return keypoint_ops.scale(keypoints, image_shape[0], image_shape[1])
|
|
|
|
|
|
def result_dict_for_single_example(image,
|
|
key,
|
|
detections,
|
|
groundtruth=None,
|
|
class_agnostic=False,
|
|
scale_to_absolute=False):
|
|
"""Merges all detection and groundtruth information for a single example.
|
|
|
|
Note that evaluation tools require classes that are 1-indexed, and so this
|
|
function performs the offset. If `class_agnostic` is True, all output classes
|
|
have label 1.
|
|
|
|
Args:
|
|
image: A single 4D uint8 image tensor of shape [1, H, W, C].
|
|
key: A single string tensor identifying the image.
|
|
detections: A dictionary of detections, returned from
|
|
DetectionModel.postprocess().
|
|
groundtruth: (Optional) Dictionary of groundtruth items, with fields:
|
|
'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
|
|
normalized coordinates.
|
|
'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
|
|
'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional)
|
|
'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional)
|
|
'groundtruth_difficult': [num_boxes] int64 tensor. (Optional)
|
|
'groundtruth_group_of': [num_boxes] int64 tensor. (Optional)
|
|
'groundtruth_instance_masks': 3D int64 tensor of instance masks
|
|
(Optional).
|
|
class_agnostic: Boolean indicating whether the detections are class-agnostic
|
|
(i.e. binary). Default False.
|
|
scale_to_absolute: Boolean indicating whether boxes and keypoints should be
|
|
scaled to absolute coordinates. Note that for IoU based evaluations, it
|
|
does not matter whether boxes are expressed in absolute or relative
|
|
coordinates. Default False.
|
|
|
|
Returns:
|
|
A dictionary with:
|
|
'original_image': A [1, H, W, C] uint8 image tensor.
|
|
'key': A string tensor with image identifier.
|
|
'detection_boxes': [max_detections, 4] float32 tensor of boxes, in
|
|
normalized or absolute coordinates, depending on the value of
|
|
`scale_to_absolute`.
|
|
'detection_scores': [max_detections] float32 tensor of scores.
|
|
'detection_classes': [max_detections] int64 tensor of 1-indexed classes.
|
|
'detection_masks': [max_detections, H, W] float32 tensor of binarized
|
|
masks, reframed to full image masks.
|
|
'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
|
|
normalized or absolute coordinates, depending on the value of
|
|
`scale_to_absolute`. (Optional)
|
|
'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
|
|
(Optional)
|
|
'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional)
|
|
'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional)
|
|
'groundtruth_difficult': [num_boxes] int64 tensor. (Optional)
|
|
'groundtruth_group_of': [num_boxes] int64 tensor. (Optional)
|
|
'groundtruth_instance_masks': 3D int64 tensor of instance masks
|
|
(Optional).
|
|
|
|
"""
|
|
|
|
if groundtruth:
|
|
max_gt_boxes = tf.shape(
|
|
groundtruth[fields.InputDataFields.groundtruth_boxes])[0]
|
|
for gt_key in groundtruth:
|
|
# expand groundtruth dict along the batch dimension.
|
|
groundtruth[gt_key] = tf.expand_dims(groundtruth[gt_key], 0)
|
|
|
|
for detection_key in detections:
|
|
detections[detection_key] = tf.expand_dims(
|
|
detections[detection_key][0], axis=0)
|
|
|
|
batched_output_dict = result_dict_for_batched_example(
|
|
image,
|
|
tf.expand_dims(key, 0),
|
|
detections,
|
|
groundtruth,
|
|
class_agnostic,
|
|
scale_to_absolute,
|
|
max_gt_boxes=max_gt_boxes)
|
|
|
|
exclude_keys = [
|
|
fields.InputDataFields.original_image,
|
|
fields.DetectionResultFields.num_detections,
|
|
fields.InputDataFields.num_groundtruth_boxes
|
|
]
|
|
|
|
output_dict = {
|
|
fields.InputDataFields.original_image:
|
|
batched_output_dict[fields.InputDataFields.original_image]
|
|
}
|
|
|
|
for key in batched_output_dict:
|
|
# remove the batch dimension.
|
|
if key not in exclude_keys:
|
|
output_dict[key] = tf.squeeze(batched_output_dict[key], 0)
|
|
return output_dict
|
|
|
|
|
|
def result_dict_for_batched_example(images,
|
|
keys,
|
|
detections,
|
|
groundtruth=None,
|
|
class_agnostic=False,
|
|
scale_to_absolute=False,
|
|
original_image_spatial_shapes=None,
|
|
true_image_shapes=None,
|
|
max_gt_boxes=None):
|
|
"""Merges all detection and groundtruth information for a single example.
|
|
|
|
Note that evaluation tools require classes that are 1-indexed, and so this
|
|
function performs the offset. If `class_agnostic` is True, all output classes
|
|
have label 1.
|
|
|
|
Args:
|
|
images: A single 4D uint8 image tensor of shape [batch_size, H, W, C].
|
|
keys: A [batch_size] string tensor with image identifier.
|
|
detections: A dictionary of detections, returned from
|
|
DetectionModel.postprocess().
|
|
groundtruth: (Optional) Dictionary of groundtruth items, with fields:
|
|
'groundtruth_boxes': [batch_size, max_number_of_boxes, 4] float32 tensor
|
|
of boxes, in normalized coordinates.
|
|
'groundtruth_classes': [batch_size, max_number_of_boxes] int64 tensor of
|
|
1-indexed classes.
|
|
'groundtruth_area': [batch_size, max_number_of_boxes] float32 tensor of
|
|
bbox area. (Optional)
|
|
'groundtruth_is_crowd':[batch_size, max_number_of_boxes] int64
|
|
tensor. (Optional)
|
|
'groundtruth_difficult': [batch_size, max_number_of_boxes] int64
|
|
tensor. (Optional)
|
|
'groundtruth_group_of': [batch_size, max_number_of_boxes] int64
|
|
tensor. (Optional)
|
|
'groundtruth_instance_masks': 4D int64 tensor of instance
|
|
masks (Optional).
|
|
class_agnostic: Boolean indicating whether the detections are class-agnostic
|
|
(i.e. binary). Default False.
|
|
scale_to_absolute: Boolean indicating whether boxes and keypoints should be
|
|
scaled to absolute coordinates. Note that for IoU based evaluations, it
|
|
does not matter whether boxes are expressed in absolute or relative
|
|
coordinates. Default False.
|
|
original_image_spatial_shapes: A 2D int32 tensor of shape [batch_size, 2]
|
|
used to resize the image. When set to None, the image size is retained.
|
|
true_image_shapes: A 2D int32 tensor of shape [batch_size, 3]
|
|
containing the size of the unpadded original_image.
|
|
max_gt_boxes: [batch_size] tensor representing the maximum number of
|
|
groundtruth boxes to pad.
|
|
|
|
Returns:
|
|
A dictionary with:
|
|
'original_image': A [batch_size, H, W, C] uint8 image tensor.
|
|
'original_image_spatial_shape': A [batch_size, 2] tensor containing the
|
|
original image sizes.
|
|
'true_image_shape': A [batch_size, 3] tensor containing the size of
|
|
the unpadded original_image.
|
|
'key': A [batch_size] string tensor with image identifier.
|
|
'detection_boxes': [batch_size, max_detections, 4] float32 tensor of boxes,
|
|
in normalized or absolute coordinates, depending on the value of
|
|
`scale_to_absolute`.
|
|
'detection_scores': [batch_size, max_detections] float32 tensor of scores.
|
|
'detection_classes': [batch_size, max_detections] int64 tensor of 1-indexed
|
|
classes.
|
|
'detection_masks': [batch_size, max_detections, H, W] float32 tensor of
|
|
binarized masks, reframed to full image masks.
|
|
'num_detections': [batch_size] int64 tensor containing number of valid
|
|
detections.
|
|
'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes, in
|
|
normalized or absolute coordinates, depending on the value of
|
|
`scale_to_absolute`. (Optional)
|
|
'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed
|
|
classes. (Optional)
|
|
'groundtruth_area': [batch_size, num_boxes] float32 tensor of bbox
|
|
area. (Optional)
|
|
'groundtruth_is_crowd': [batch_size, num_boxes] int64 tensor. (Optional)
|
|
'groundtruth_difficult': [batch_size, num_boxes] int64 tensor. (Optional)
|
|
'groundtruth_group_of': [batch_size, num_boxes] int64 tensor. (Optional)
|
|
'groundtruth_instance_masks': 4D int64 tensor of instance masks
|
|
(Optional).
|
|
'num_groundtruth_boxes': [batch_size] tensor containing the maximum number
|
|
of groundtruth boxes per image.
|
|
|
|
Raises:
|
|
ValueError: if original_image_spatial_shape is not 2D int32 tensor of shape
|
|
[2].
|
|
ValueError: if true_image_shapes is not 2D int32 tensor of shape
|
|
[3].
|
|
"""
|
|
label_id_offset = 1 # Applying label id offset (b/63711816)
|
|
|
|
input_data_fields = fields.InputDataFields
|
|
if original_image_spatial_shapes is None:
|
|
original_image_spatial_shapes = tf.tile(
|
|
tf.expand_dims(tf.shape(images)[1:3], axis=0),
|
|
multiples=[tf.shape(images)[0], 1])
|
|
else:
|
|
if (len(original_image_spatial_shapes.shape) != 2 and
|
|
original_image_spatial_shapes.shape[1] != 2):
|
|
raise ValueError(
|
|
'`original_image_spatial_shape` should be a 2D tensor of shape '
|
|
'[batch_size, 2].')
|
|
|
|
if true_image_shapes is None:
|
|
true_image_shapes = tf.tile(
|
|
tf.expand_dims(tf.shape(images)[1:4], axis=0),
|
|
multiples=[tf.shape(images)[0], 1])
|
|
else:
|
|
if (len(true_image_shapes.shape) != 2
|
|
and true_image_shapes.shape[1] != 3):
|
|
raise ValueError('`true_image_shapes` should be a 2D tensor of '
|
|
'shape [batch_size, 3].')
|
|
|
|
output_dict = {
|
|
input_data_fields.original_image:
|
|
images,
|
|
input_data_fields.key:
|
|
keys,
|
|
input_data_fields.original_image_spatial_shape: (
|
|
original_image_spatial_shapes),
|
|
input_data_fields.true_image_shape:
|
|
true_image_shapes
|
|
}
|
|
|
|
detection_fields = fields.DetectionResultFields
|
|
detection_boxes = detections[detection_fields.detection_boxes]
|
|
detection_scores = detections[detection_fields.detection_scores]
|
|
num_detections = tf.cast(detections[detection_fields.num_detections],
|
|
dtype=tf.int32)
|
|
|
|
if class_agnostic:
|
|
detection_classes = tf.ones_like(detection_scores, dtype=tf.int64)
|
|
else:
|
|
detection_classes = (
|
|
tf.to_int64(detections[detection_fields.detection_classes]) +
|
|
label_id_offset)
|
|
|
|
if scale_to_absolute:
|
|
output_dict[detection_fields.detection_boxes] = (
|
|
shape_utils.static_or_dynamic_map_fn(
|
|
_scale_box_to_absolute,
|
|
elems=[detection_boxes, original_image_spatial_shapes],
|
|
dtype=tf.float32))
|
|
else:
|
|
output_dict[detection_fields.detection_boxes] = detection_boxes
|
|
output_dict[detection_fields.detection_classes] = detection_classes
|
|
output_dict[detection_fields.detection_scores] = detection_scores
|
|
output_dict[detection_fields.num_detections] = num_detections
|
|
|
|
if detection_fields.detection_masks in detections:
|
|
detection_masks = detections[detection_fields.detection_masks]
|
|
# TODO(rathodv): This should be done in model's postprocess
|
|
# function ideally.
|
|
output_dict[detection_fields.detection_masks] = (
|
|
shape_utils.static_or_dynamic_map_fn(
|
|
_resize_detection_masks,
|
|
elems=[detection_boxes, detection_masks,
|
|
original_image_spatial_shapes],
|
|
dtype=tf.uint8))
|
|
|
|
if detection_fields.detection_keypoints in detections:
|
|
detection_keypoints = detections[detection_fields.detection_keypoints]
|
|
output_dict[detection_fields.detection_keypoints] = detection_keypoints
|
|
if scale_to_absolute:
|
|
output_dict[detection_fields.detection_keypoints] = (
|
|
shape_utils.static_or_dynamic_map_fn(
|
|
_scale_keypoint_to_absolute,
|
|
elems=[detection_keypoints, original_image_spatial_shapes],
|
|
dtype=tf.float32))
|
|
|
|
if groundtruth:
|
|
if max_gt_boxes is None:
|
|
if input_data_fields.num_groundtruth_boxes in groundtruth:
|
|
max_gt_boxes = groundtruth[input_data_fields.num_groundtruth_boxes]
|
|
else:
|
|
raise ValueError(
|
|
'max_gt_boxes must be provided when processing batched examples.')
|
|
|
|
if input_data_fields.groundtruth_instance_masks in groundtruth:
|
|
masks = groundtruth[input_data_fields.groundtruth_instance_masks]
|
|
groundtruth[input_data_fields.groundtruth_instance_masks] = (
|
|
shape_utils.static_or_dynamic_map_fn(
|
|
_resize_groundtruth_masks,
|
|
elems=[masks, original_image_spatial_shapes],
|
|
dtype=tf.uint8))
|
|
|
|
output_dict.update(groundtruth)
|
|
if scale_to_absolute:
|
|
groundtruth_boxes = groundtruth[input_data_fields.groundtruth_boxes]
|
|
output_dict[input_data_fields.groundtruth_boxes] = (
|
|
shape_utils.static_or_dynamic_map_fn(
|
|
_scale_box_to_absolute,
|
|
elems=[groundtruth_boxes, original_image_spatial_shapes],
|
|
dtype=tf.float32))
|
|
|
|
# For class-agnostic models, groundtruth classes all become 1.
|
|
if class_agnostic:
|
|
groundtruth_classes = groundtruth[input_data_fields.groundtruth_classes]
|
|
groundtruth_classes = tf.ones_like(groundtruth_classes, dtype=tf.int64)
|
|
output_dict[input_data_fields.groundtruth_classes] = groundtruth_classes
|
|
|
|
output_dict[input_data_fields.num_groundtruth_boxes] = max_gt_boxes
|
|
|
|
return output_dict
|
|
|
|
|
|
def get_evaluators(eval_config, categories, evaluator_options=None):
|
|
"""Returns the evaluator class according to eval_config, valid for categories.
|
|
|
|
Args:
|
|
eval_config: An `eval_pb2.EvalConfig`.
|
|
categories: A list of dicts, each of which has the following keys -
|
|
'id': (required) an integer id uniquely identifying this category.
|
|
'name': (required) string representing category name e.g., 'cat', 'dog'.
|
|
evaluator_options: A dictionary of metric names (see
|
|
EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization
|
|
keyword arguments. For example:
|
|
evalator_options = {
|
|
'coco_detection_metrics': {'include_metrics_per_category': True}
|
|
}
|
|
|
|
Returns:
|
|
An list of instances of DetectionEvaluator.
|
|
|
|
Raises:
|
|
ValueError: if metric is not in the metric class dictionary.
|
|
"""
|
|
evaluator_options = evaluator_options or {}
|
|
eval_metric_fn_keys = eval_config.metrics_set
|
|
if not eval_metric_fn_keys:
|
|
eval_metric_fn_keys = [EVAL_DEFAULT_METRIC]
|
|
evaluators_list = []
|
|
for eval_metric_fn_key in eval_metric_fn_keys:
|
|
if eval_metric_fn_key not in EVAL_METRICS_CLASS_DICT:
|
|
raise ValueError('Metric not found: {}'.format(eval_metric_fn_key))
|
|
kwargs_dict = (evaluator_options[eval_metric_fn_key] if eval_metric_fn_key
|
|
in evaluator_options else {})
|
|
evaluators_list.append(EVAL_METRICS_CLASS_DICT[eval_metric_fn_key](
|
|
categories,
|
|
**kwargs_dict))
|
|
return evaluators_list
|
|
|
|
|
|
def get_eval_metric_ops_for_evaluators(eval_config,
|
|
categories,
|
|
eval_dict):
|
|
"""Returns eval metrics ops to use with `tf.estimator.EstimatorSpec`.
|
|
|
|
Args:
|
|
eval_config: An `eval_pb2.EvalConfig`.
|
|
categories: A list of dicts, each of which has the following keys -
|
|
'id': (required) an integer id uniquely identifying this category.
|
|
'name': (required) string representing category name e.g., 'cat', 'dog'.
|
|
eval_dict: An evaluation dictionary, returned from
|
|
result_dict_for_single_example().
|
|
|
|
Returns:
|
|
A dictionary of metric names to tuple of value_op and update_op that can be
|
|
used as eval metric ops in tf.EstimatorSpec.
|
|
"""
|
|
eval_metric_ops = {}
|
|
evaluator_options = evaluator_options_from_eval_config(eval_config)
|
|
evaluators_list = get_evaluators(eval_config, categories, evaluator_options)
|
|
for evaluator in evaluators_list:
|
|
eval_metric_ops.update(evaluator.get_estimator_eval_metric_ops(
|
|
eval_dict))
|
|
return eval_metric_ops
|
|
|
|
|
|
def evaluator_options_from_eval_config(eval_config):
|
|
"""Produces a dictionary of evaluation options for each eval metric.
|
|
|
|
Args:
|
|
eval_config: An `eval_pb2.EvalConfig`.
|
|
|
|
Returns:
|
|
evaluator_options: A dictionary of metric names (see
|
|
EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization
|
|
keyword arguments. For example:
|
|
evalator_options = {
|
|
'coco_detection_metrics': {'include_metrics_per_category': True}
|
|
}
|
|
"""
|
|
eval_metric_fn_keys = eval_config.metrics_set
|
|
evaluator_options = {}
|
|
for eval_metric_fn_key in eval_metric_fn_keys:
|
|
if eval_metric_fn_key in ('coco_detection_metrics', 'coco_mask_metrics'):
|
|
evaluator_options[eval_metric_fn_key] = {
|
|
'include_metrics_per_category': (
|
|
eval_config.include_metrics_per_category)
|
|
}
|
|
elif eval_metric_fn_key == 'precision_at_recall_detection_metrics':
|
|
evaluator_options[eval_metric_fn_key] = {
|
|
'recall_lower_bound': (eval_config.recall_lower_bound),
|
|
'recall_upper_bound': (eval_config.recall_upper_bound)
|
|
}
|
|
return evaluator_options
|