|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Functions to export object detection inference graph."""
|
|
import os
|
|
import tempfile
|
|
import tensorflow as tf
|
|
from tensorflow.contrib.quantize.python import graph_matcher
|
|
from tensorflow.core.protobuf import saver_pb2
|
|
from tensorflow.python.tools import freeze_graph # pylint: disable=g-direct-tensorflow-import
|
|
from object_detection.builders import graph_rewriter_builder
|
|
from object_detection.builders import model_builder
|
|
from object_detection.core import standard_fields as fields
|
|
from object_detection.data_decoders import tf_example_decoder
|
|
from object_detection.utils import config_util
|
|
from object_detection.utils import shape_utils
|
|
|
|
slim = tf.contrib.slim
|
|
|
|
freeze_graph_with_def_protos = freeze_graph.freeze_graph_with_def_protos
|
|
|
|
|
|
def rewrite_nn_resize_op(is_quantized=False):
|
|
"""Replaces a custom nearest-neighbor resize op with the Tensorflow version.
|
|
|
|
Some graphs use this custom version for TPU-compatibility.
|
|
|
|
Args:
|
|
is_quantized: True if the default graph is quantized.
|
|
"""
|
|
input_pattern = graph_matcher.OpTypePattern(
|
|
'FakeQuantWithMinMaxVars' if is_quantized else '*')
|
|
reshape_1_pattern = graph_matcher.OpTypePattern(
|
|
'Reshape', inputs=[input_pattern, 'Const'], ordered_inputs=False)
|
|
mul_pattern = graph_matcher.OpTypePattern(
|
|
'Mul', inputs=[reshape_1_pattern, 'Const'], ordered_inputs=False)
|
|
# The quantization script may or may not insert a fake quant op after the
|
|
# Mul. In either case, these min/max vars are not needed once replaced with
|
|
# the TF version of NN resize.
|
|
fake_quant_pattern = graph_matcher.OpTypePattern(
|
|
'FakeQuantWithMinMaxVars',
|
|
inputs=[mul_pattern, 'Identity', 'Identity'],
|
|
ordered_inputs=False)
|
|
reshape_2_pattern = graph_matcher.OpTypePattern(
|
|
'Reshape',
|
|
inputs=[graph_matcher.OneofPattern([fake_quant_pattern, mul_pattern]),
|
|
'Const'],
|
|
ordered_inputs=False)
|
|
add_pattern = graph_matcher.OpTypePattern(
|
|
'Add', inputs=[reshape_2_pattern, '*'], ordered_inputs=False)
|
|
|
|
matcher = graph_matcher.GraphMatcher(add_pattern)
|
|
for match in matcher.match_graph(tf.get_default_graph()):
|
|
projection_op = match.get_op(input_pattern)
|
|
reshape_2_op = match.get_op(reshape_2_pattern)
|
|
add_op = match.get_op(add_pattern)
|
|
nn_resize = tf.image.resize_nearest_neighbor(
|
|
projection_op.outputs[0],
|
|
add_op.outputs[0].shape.dims[1:3],
|
|
align_corners=False,
|
|
name=os.path.split(reshape_2_op.name)[0] + '/resize_nearest_neighbor')
|
|
|
|
for index, op_input in enumerate(add_op.inputs):
|
|
if op_input == reshape_2_op.outputs[0]:
|
|
add_op._update_input(index, nn_resize) # pylint: disable=protected-access
|
|
break
|
|
|
|
|
|
def replace_variable_values_with_moving_averages(graph,
|
|
current_checkpoint_file,
|
|
new_checkpoint_file):
|
|
"""Replaces variable values in the checkpoint with their moving averages.
|
|
|
|
If the current checkpoint has shadow variables maintaining moving averages of
|
|
the variables defined in the graph, this function generates a new checkpoint
|
|
where the variables contain the values of their moving averages.
|
|
|
|
Args:
|
|
graph: a tf.Graph object.
|
|
current_checkpoint_file: a checkpoint containing both original variables and
|
|
their moving averages.
|
|
new_checkpoint_file: file path to write a new checkpoint.
|
|
"""
|
|
with graph.as_default():
|
|
variable_averages = tf.train.ExponentialMovingAverage(0.0)
|
|
ema_variables_to_restore = variable_averages.variables_to_restore()
|
|
with tf.Session() as sess:
|
|
read_saver = tf.train.Saver(ema_variables_to_restore)
|
|
read_saver.restore(sess, current_checkpoint_file)
|
|
write_saver = tf.train.Saver()
|
|
write_saver.save(sess, new_checkpoint_file)
|
|
|
|
|
|
def _image_tensor_input_placeholder(input_shape=None):
|
|
"""Returns input placeholder and a 4-D uint8 image tensor."""
|
|
if input_shape is None:
|
|
input_shape = (None, None, None, 3)
|
|
input_tensor = tf.placeholder(
|
|
dtype=tf.uint8, shape=input_shape, name='image_tensor')
|
|
return input_tensor, input_tensor
|
|
|
|
|
|
def _tf_example_input_placeholder():
|
|
"""Returns input that accepts a batch of strings with tf examples.
|
|
|
|
Returns:
|
|
a tuple of input placeholder and the output decoded images.
|
|
"""
|
|
batch_tf_example_placeholder = tf.placeholder(
|
|
tf.string, shape=[None], name='tf_example')
|
|
def decode(tf_example_string_tensor):
|
|
tensor_dict = tf_example_decoder.TfExampleDecoder().decode(
|
|
tf_example_string_tensor)
|
|
image_tensor = tensor_dict[fields.InputDataFields.image]
|
|
return image_tensor
|
|
return (batch_tf_example_placeholder,
|
|
shape_utils.static_or_dynamic_map_fn(
|
|
decode,
|
|
elems=batch_tf_example_placeholder,
|
|
dtype=tf.uint8,
|
|
parallel_iterations=32,
|
|
back_prop=False))
|
|
|
|
|
|
def _encoded_image_string_tensor_input_placeholder():
|
|
"""Returns input that accepts a batch of PNG or JPEG strings.
|
|
|
|
Returns:
|
|
a tuple of input placeholder and the output decoded images.
|
|
"""
|
|
batch_image_str_placeholder = tf.placeholder(
|
|
dtype=tf.string,
|
|
shape=[None],
|
|
name='encoded_image_string_tensor')
|
|
def decode(encoded_image_string_tensor):
|
|
image_tensor = tf.image.decode_image(encoded_image_string_tensor,
|
|
channels=3)
|
|
image_tensor.set_shape((None, None, 3))
|
|
return image_tensor
|
|
return (batch_image_str_placeholder,
|
|
tf.map_fn(
|
|
decode,
|
|
elems=batch_image_str_placeholder,
|
|
dtype=tf.uint8,
|
|
parallel_iterations=32,
|
|
back_prop=False))
|
|
|
|
|
|
input_placeholder_fn_map = {
|
|
'image_tensor': _image_tensor_input_placeholder,
|
|
'encoded_image_string_tensor':
|
|
_encoded_image_string_tensor_input_placeholder,
|
|
'tf_example': _tf_example_input_placeholder,
|
|
}
|
|
|
|
|
|
def add_output_tensor_nodes(postprocessed_tensors,
|
|
output_collection_name='inference_op'):
|
|
"""Adds output nodes for detection boxes and scores.
|
|
|
|
Adds the following nodes for output tensors -
|
|
* num_detections: float32 tensor of shape [batch_size].
|
|
* detection_boxes: float32 tensor of shape [batch_size, num_boxes, 4]
|
|
containing detected boxes.
|
|
* detection_scores: float32 tensor of shape [batch_size, num_boxes]
|
|
containing scores for the detected boxes.
|
|
* detection_multiclass_scores: (Optional) float32 tensor of shape
|
|
[batch_size, num_boxes, num_classes_with_background] for containing class
|
|
score distribution for detected boxes including background if any.
|
|
* detection_classes: float32 tensor of shape [batch_size, num_boxes]
|
|
containing class predictions for the detected boxes.
|
|
* detection_keypoints: (Optional) float32 tensor of shape
|
|
[batch_size, num_boxes, num_keypoints, 2] containing keypoints for each
|
|
detection box.
|
|
* detection_masks: (Optional) float32 tensor of shape
|
|
[batch_size, num_boxes, mask_height, mask_width] containing masks for each
|
|
detection box.
|
|
|
|
Args:
|
|
postprocessed_tensors: a dictionary containing the following fields
|
|
'detection_boxes': [batch, max_detections, 4]
|
|
'detection_scores': [batch, max_detections]
|
|
'detection_multiclass_scores': [batch, max_detections,
|
|
num_classes_with_background]
|
|
'detection_classes': [batch, max_detections]
|
|
'detection_masks': [batch, max_detections, mask_height, mask_width]
|
|
(optional).
|
|
'detection_keypoints': [batch, max_detections, num_keypoints, 2]
|
|
(optional).
|
|
'num_detections': [batch]
|
|
output_collection_name: Name of collection to add output tensors to.
|
|
|
|
Returns:
|
|
A tensor dict containing the added output tensor nodes.
|
|
"""
|
|
detection_fields = fields.DetectionResultFields
|
|
label_id_offset = 1
|
|
boxes = postprocessed_tensors.get(detection_fields.detection_boxes)
|
|
scores = postprocessed_tensors.get(detection_fields.detection_scores)
|
|
multiclass_scores = postprocessed_tensors.get(
|
|
detection_fields.detection_multiclass_scores)
|
|
raw_boxes = postprocessed_tensors.get(detection_fields.raw_detection_boxes)
|
|
raw_scores = postprocessed_tensors.get(detection_fields.raw_detection_scores)
|
|
classes = postprocessed_tensors.get(
|
|
detection_fields.detection_classes) + label_id_offset
|
|
keypoints = postprocessed_tensors.get(detection_fields.detection_keypoints)
|
|
masks = postprocessed_tensors.get(detection_fields.detection_masks)
|
|
num_detections = postprocessed_tensors.get(detection_fields.num_detections)
|
|
outputs = {}
|
|
outputs[detection_fields.detection_boxes] = tf.identity(
|
|
boxes, name=detection_fields.detection_boxes)
|
|
outputs[detection_fields.detection_scores] = tf.identity(
|
|
scores, name=detection_fields.detection_scores)
|
|
if multiclass_scores is not None:
|
|
outputs[detection_fields.detection_multiclass_scores] = tf.identity(
|
|
multiclass_scores, name=detection_fields.detection_multiclass_scores)
|
|
outputs[detection_fields.detection_classes] = tf.identity(
|
|
classes, name=detection_fields.detection_classes)
|
|
outputs[detection_fields.num_detections] = tf.identity(
|
|
num_detections, name=detection_fields.num_detections)
|
|
if raw_boxes is not None:
|
|
outputs[detection_fields.raw_detection_boxes] = tf.identity(
|
|
raw_boxes, name=detection_fields.raw_detection_boxes)
|
|
if raw_scores is not None:
|
|
outputs[detection_fields.raw_detection_scores] = tf.identity(
|
|
raw_scores, name=detection_fields.raw_detection_scores)
|
|
if keypoints is not None:
|
|
outputs[detection_fields.detection_keypoints] = tf.identity(
|
|
keypoints, name=detection_fields.detection_keypoints)
|
|
if masks is not None:
|
|
outputs[detection_fields.detection_masks] = tf.identity(
|
|
masks, name=detection_fields.detection_masks)
|
|
for output_key in outputs:
|
|
tf.add_to_collection(output_collection_name, outputs[output_key])
|
|
|
|
return outputs
|
|
|
|
|
|
def write_saved_model(saved_model_path,
|
|
frozen_graph_def,
|
|
inputs,
|
|
outputs):
|
|
"""Writes SavedModel to disk.
|
|
|
|
If checkpoint_path is not None bakes the weights into the graph thereby
|
|
eliminating the need of checkpoint files during inference. If the model
|
|
was trained with moving averages, setting use_moving_averages to true
|
|
restores the moving averages, otherwise the original set of variables
|
|
is restored.
|
|
|
|
Args:
|
|
saved_model_path: Path to write SavedModel.
|
|
frozen_graph_def: tf.GraphDef holding frozen graph.
|
|
inputs: The input placeholder tensor.
|
|
outputs: A tensor dictionary containing the outputs of a DetectionModel.
|
|
"""
|
|
with tf.Graph().as_default():
|
|
with tf.Session() as sess:
|
|
|
|
tf.import_graph_def(frozen_graph_def, name='')
|
|
|
|
builder = tf.saved_model.builder.SavedModelBuilder(saved_model_path)
|
|
|
|
tensor_info_inputs = {
|
|
'inputs': tf.saved_model.utils.build_tensor_info(inputs)}
|
|
tensor_info_outputs = {}
|
|
for k, v in outputs.items():
|
|
tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v)
|
|
|
|
detection_signature = (
|
|
tf.saved_model.signature_def_utils.build_signature_def(
|
|
inputs=tensor_info_inputs,
|
|
outputs=tensor_info_outputs,
|
|
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
|
|
))
|
|
|
|
builder.add_meta_graph_and_variables(
|
|
sess,
|
|
[tf.saved_model.tag_constants.SERVING],
|
|
signature_def_map={
|
|
tf.saved_model.signature_constants
|
|
.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
|
|
detection_signature,
|
|
},
|
|
)
|
|
builder.save()
|
|
|
|
|
|
def write_graph_and_checkpoint(inference_graph_def,
|
|
model_path,
|
|
input_saver_def,
|
|
trained_checkpoint_prefix):
|
|
"""Writes the graph and the checkpoint into disk."""
|
|
for node in inference_graph_def.node:
|
|
node.device = ''
|
|
with tf.Graph().as_default():
|
|
tf.import_graph_def(inference_graph_def, name='')
|
|
with tf.Session() as sess:
|
|
saver = tf.train.Saver(
|
|
saver_def=input_saver_def, save_relative_paths=True)
|
|
saver.restore(sess, trained_checkpoint_prefix)
|
|
saver.save(sess, model_path)
|
|
|
|
|
|
def _get_outputs_from_inputs(input_tensors, detection_model,
|
|
output_collection_name):
|
|
inputs = tf.cast(input_tensors, dtype=tf.float32)
|
|
preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs)
|
|
output_tensors = detection_model.predict(
|
|
preprocessed_inputs, true_image_shapes)
|
|
postprocessed_tensors = detection_model.postprocess(
|
|
output_tensors, true_image_shapes)
|
|
return add_output_tensor_nodes(postprocessed_tensors,
|
|
output_collection_name)
|
|
|
|
|
|
def build_detection_graph(input_type, detection_model, input_shape,
|
|
output_collection_name, graph_hook_fn):
|
|
"""Build the detection graph."""
|
|
if input_type not in input_placeholder_fn_map:
|
|
raise ValueError('Unknown input type: {}'.format(input_type))
|
|
placeholder_args = {}
|
|
if input_shape is not None:
|
|
if input_type != 'image_tensor':
|
|
raise ValueError('Can only specify input shape for `image_tensor` '
|
|
'inputs.')
|
|
placeholder_args['input_shape'] = input_shape
|
|
placeholder_tensor, input_tensors = input_placeholder_fn_map[input_type](
|
|
**placeholder_args)
|
|
outputs = _get_outputs_from_inputs(
|
|
input_tensors=input_tensors,
|
|
detection_model=detection_model,
|
|
output_collection_name=output_collection_name)
|
|
|
|
# Add global step to the graph.
|
|
slim.get_or_create_global_step()
|
|
|
|
if graph_hook_fn: graph_hook_fn()
|
|
|
|
return outputs, placeholder_tensor
|
|
|
|
|
|
def _export_inference_graph(input_type,
|
|
detection_model,
|
|
use_moving_averages,
|
|
trained_checkpoint_prefix,
|
|
output_directory,
|
|
additional_output_tensor_names=None,
|
|
input_shape=None,
|
|
output_collection_name='inference_op',
|
|
graph_hook_fn=None,
|
|
write_inference_graph=False,
|
|
temp_checkpoint_prefix=''):
|
|
"""Export helper."""
|
|
tf.gfile.MakeDirs(output_directory)
|
|
frozen_graph_path = os.path.join(output_directory,
|
|
'frozen_inference_graph.pb')
|
|
saved_model_path = os.path.join(output_directory, 'saved_model')
|
|
model_path = os.path.join(output_directory, 'model.ckpt')
|
|
|
|
outputs, placeholder_tensor = build_detection_graph(
|
|
input_type=input_type,
|
|
detection_model=detection_model,
|
|
input_shape=input_shape,
|
|
output_collection_name=output_collection_name,
|
|
graph_hook_fn=graph_hook_fn)
|
|
|
|
profile_inference_graph(tf.get_default_graph())
|
|
saver_kwargs = {}
|
|
if use_moving_averages:
|
|
if not temp_checkpoint_prefix:
|
|
# This check is to be compatible with both version of SaverDef.
|
|
if os.path.isfile(trained_checkpoint_prefix):
|
|
saver_kwargs['write_version'] = saver_pb2.SaverDef.V1
|
|
temp_checkpoint_prefix = tempfile.NamedTemporaryFile().name
|
|
else:
|
|
temp_checkpoint_prefix = tempfile.mkdtemp()
|
|
replace_variable_values_with_moving_averages(
|
|
tf.get_default_graph(), trained_checkpoint_prefix,
|
|
temp_checkpoint_prefix)
|
|
checkpoint_to_use = temp_checkpoint_prefix
|
|
else:
|
|
checkpoint_to_use = trained_checkpoint_prefix
|
|
|
|
saver = tf.train.Saver(**saver_kwargs)
|
|
input_saver_def = saver.as_saver_def()
|
|
|
|
write_graph_and_checkpoint(
|
|
inference_graph_def=tf.get_default_graph().as_graph_def(),
|
|
model_path=model_path,
|
|
input_saver_def=input_saver_def,
|
|
trained_checkpoint_prefix=checkpoint_to_use)
|
|
if write_inference_graph:
|
|
inference_graph_def = tf.get_default_graph().as_graph_def()
|
|
inference_graph_path = os.path.join(output_directory,
|
|
'inference_graph.pbtxt')
|
|
for node in inference_graph_def.node:
|
|
node.device = ''
|
|
with tf.gfile.GFile(inference_graph_path, 'wb') as f:
|
|
f.write(str(inference_graph_def))
|
|
|
|
if additional_output_tensor_names is not None:
|
|
output_node_names = ','.join(outputs.keys()+additional_output_tensor_names)
|
|
else:
|
|
output_node_names = ','.join(outputs.keys())
|
|
|
|
frozen_graph_def = freeze_graph.freeze_graph_with_def_protos(
|
|
input_graph_def=tf.get_default_graph().as_graph_def(),
|
|
input_saver_def=input_saver_def,
|
|
input_checkpoint=checkpoint_to_use,
|
|
output_node_names=output_node_names,
|
|
restore_op_name='save/restore_all',
|
|
filename_tensor_name='save/Const:0',
|
|
output_graph=frozen_graph_path,
|
|
clear_devices=True,
|
|
initializer_nodes='')
|
|
|
|
write_saved_model(saved_model_path, frozen_graph_def,
|
|
placeholder_tensor, outputs)
|
|
|
|
|
|
def export_inference_graph(input_type,
|
|
pipeline_config,
|
|
trained_checkpoint_prefix,
|
|
output_directory,
|
|
input_shape=None,
|
|
output_collection_name='inference_op',
|
|
additional_output_tensor_names=None,
|
|
write_inference_graph=False):
|
|
"""Exports inference graph for the model specified in the pipeline config.
|
|
|
|
Args:
|
|
input_type: Type of input for the graph. Can be one of ['image_tensor',
|
|
'encoded_image_string_tensor', 'tf_example'].
|
|
pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto.
|
|
trained_checkpoint_prefix: Path to the trained checkpoint file.
|
|
output_directory: Path to write outputs.
|
|
input_shape: Sets a fixed shape for an `image_tensor` input. If not
|
|
specified, will default to [None, None, None, 3].
|
|
output_collection_name: Name of collection to add output tensors to.
|
|
If None, does not add output tensors to a collection.
|
|
additional_output_tensor_names: list of additional output
|
|
tensors to include in the frozen graph.
|
|
write_inference_graph: If true, writes inference graph to disk.
|
|
"""
|
|
detection_model = model_builder.build(pipeline_config.model,
|
|
is_training=False)
|
|
graph_rewriter_fn = None
|
|
if pipeline_config.HasField('graph_rewriter'):
|
|
graph_rewriter_config = pipeline_config.graph_rewriter
|
|
graph_rewriter_fn = graph_rewriter_builder.build(graph_rewriter_config,
|
|
is_training=False)
|
|
_export_inference_graph(
|
|
input_type,
|
|
detection_model,
|
|
pipeline_config.eval_config.use_moving_averages,
|
|
trained_checkpoint_prefix,
|
|
output_directory,
|
|
additional_output_tensor_names,
|
|
input_shape,
|
|
output_collection_name,
|
|
graph_hook_fn=graph_rewriter_fn,
|
|
write_inference_graph=write_inference_graph)
|
|
pipeline_config.eval_config.use_moving_averages = False
|
|
config_util.save_pipeline_config(pipeline_config, output_directory)
|
|
|
|
|
|
def profile_inference_graph(graph):
|
|
"""Profiles the inference graph.
|
|
|
|
Prints model parameters and computation FLOPs given an inference graph.
|
|
BatchNorms are excluded from the parameter count due to the fact that
|
|
BatchNorms are usually folded. BatchNorm, Initializer, Regularizer
|
|
and BiasAdd are not considered in FLOP count.
|
|
|
|
Args:
|
|
graph: the inference graph.
|
|
"""
|
|
tfprof_vars_option = (
|
|
tf.contrib.tfprof.model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS)
|
|
tfprof_flops_option = tf.contrib.tfprof.model_analyzer.FLOAT_OPS_OPTIONS
|
|
|
|
# Batchnorm is usually folded during inference.
|
|
tfprof_vars_option['trim_name_regexes'] = ['.*BatchNorm.*']
|
|
# Initializer and Regularizer are only used in training.
|
|
tfprof_flops_option['trim_name_regexes'] = [
|
|
'.*BatchNorm.*', '.*Initializer.*', '.*Regularizer.*', '.*BiasAdd.*'
|
|
]
|
|
|
|
tf.contrib.tfprof.model_analyzer.print_model_analysis(
|
|
graph,
|
|
tfprof_options=tfprof_vars_option)
|
|
|
|
tf.contrib.tfprof.model_analyzer.print_model_analysis(
|
|
graph,
|
|
tfprof_options=tfprof_flops_option)
|