|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Object detection calibration metrics.
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import tensorflow as tf
|
|
from tensorflow.python.ops import metrics_impl
|
|
|
|
|
|
def _safe_div(numerator, denominator):
|
|
"""Divides two tensors element-wise, returning 0 if the denominator is <= 0.
|
|
|
|
Args:
|
|
numerator: A real `Tensor`.
|
|
denominator: A real `Tensor`, with dtype matching `numerator`.
|
|
|
|
Returns:
|
|
0 if `denominator` <= 0, else `numerator` / `denominator`
|
|
"""
|
|
t = tf.truediv(numerator, denominator)
|
|
zero = tf.zeros_like(t, dtype=denominator.dtype)
|
|
condition = tf.greater(denominator, zero)
|
|
zero = tf.cast(zero, t.dtype)
|
|
return tf.where(condition, t, zero)
|
|
|
|
|
|
def _ece_from_bins(bin_counts, bin_true_sum, bin_preds_sum, name):
|
|
"""Calculates Expected Calibration Error from accumulated statistics."""
|
|
bin_accuracies = _safe_div(bin_true_sum, bin_counts)
|
|
bin_confidences = _safe_div(bin_preds_sum, bin_counts)
|
|
abs_bin_errors = tf.abs(bin_accuracies - bin_confidences)
|
|
bin_weights = _safe_div(bin_counts, tf.reduce_sum(bin_counts))
|
|
return tf.reduce_sum(abs_bin_errors * bin_weights, name=name)
|
|
|
|
|
|
def expected_calibration_error(y_true, y_pred, nbins=20):
|
|
"""Calculates Expected Calibration Error (ECE).
|
|
|
|
ECE is a scalar summary statistic of calibration error. It is the
|
|
sample-weighted average of the difference between the predicted and true
|
|
probabilities of a positive detection across uniformly-spaced model
|
|
confidences [0, 1]. See referenced paper for a thorough explanation.
|
|
|
|
Reference:
|
|
Guo, et. al, "On Calibration of Modern Neural Networks"
|
|
Page 2, Expected Calibration Error (ECE).
|
|
https://arxiv.org/pdf/1706.04599.pdf
|
|
|
|
This function creates three local variables, `bin_counts`, `bin_true_sum`, and
|
|
`bin_preds_sum` that are used to compute ECE. For estimation of the metric
|
|
over a stream of data, the function creates an `update_op` operation that
|
|
updates these variables and returns the ECE.
|
|
|
|
Args:
|
|
y_true: 1-D tf.int64 Tensor of binarized ground truth, corresponding to each
|
|
prediction in y_pred.
|
|
y_pred: 1-D tf.float32 tensor of model confidence scores in range
|
|
[0.0, 1.0].
|
|
nbins: int specifying the number of uniformly-spaced bins into which y_pred
|
|
will be bucketed.
|
|
|
|
Returns:
|
|
value_op: A value metric op that returns ece.
|
|
update_op: An operation that increments the `bin_counts`, `bin_true_sum`,
|
|
and `bin_preds_sum` variables appropriately and whose value matches `ece`.
|
|
|
|
Raises:
|
|
InvalidArgumentError: if y_pred is not in [0.0, 1.0].
|
|
"""
|
|
bin_counts = metrics_impl.metric_variable(
|
|
[nbins], tf.float32, name='bin_counts')
|
|
bin_true_sum = metrics_impl.metric_variable(
|
|
[nbins], tf.float32, name='true_sum')
|
|
bin_preds_sum = metrics_impl.metric_variable(
|
|
[nbins], tf.float32, name='preds_sum')
|
|
|
|
with tf.control_dependencies([
|
|
tf.assert_greater_equal(y_pred, 0.0),
|
|
tf.assert_less_equal(y_pred, 1.0),
|
|
]):
|
|
bin_ids = tf.histogram_fixed_width_bins(y_pred, [0.0, 1.0], nbins=nbins)
|
|
|
|
with tf.control_dependencies([bin_ids]):
|
|
update_bin_counts_op = tf.assign_add(
|
|
bin_counts, tf.cast(tf.bincount(bin_ids, minlength=nbins),
|
|
dtype=tf.float32))
|
|
update_bin_true_sum_op = tf.assign_add(
|
|
bin_true_sum,
|
|
tf.cast(tf.bincount(bin_ids, weights=y_true, minlength=nbins),
|
|
dtype=tf.float32))
|
|
update_bin_preds_sum_op = tf.assign_add(
|
|
bin_preds_sum,
|
|
tf.cast(tf.bincount(bin_ids, weights=y_pred, minlength=nbins),
|
|
dtype=tf.float32))
|
|
|
|
ece_update_op = _ece_from_bins(
|
|
update_bin_counts_op,
|
|
update_bin_true_sum_op,
|
|
update_bin_preds_sum_op,
|
|
name='update_op')
|
|
ece = _ece_from_bins(bin_counts, bin_true_sum, bin_preds_sum, name='value')
|
|
return ece, ece_update_op
|