|
syntax = "proto2";
|
|
|
|
package object_detection.protos;
|
|
|
|
import "object_detection/protos/calibration.proto";
|
|
|
|
// Configuration proto for non-max-suppression operation on a batch of
|
|
// detections.
|
|
message BatchNonMaxSuppression {
|
|
// Scalar threshold for score (low scoring boxes are removed).
|
|
optional float score_threshold = 1 [default = 0.0];
|
|
|
|
// Scalar threshold for IOU (boxes that have high IOU overlap
|
|
// with previously selected boxes are removed).
|
|
optional float iou_threshold = 2 [default = 0.6];
|
|
|
|
// Maximum number of detections to retain per class.
|
|
optional int32 max_detections_per_class = 3 [default = 100];
|
|
|
|
// Maximum number of detections to retain across all classes.
|
|
optional int32 max_total_detections = 5 [default = 100];
|
|
|
|
// Whether to use the implementation of NMS that guarantees static shapes.
|
|
optional bool use_static_shapes = 6 [default = false];
|
|
|
|
// Whether to use class agnostic NMS.
|
|
// Class-agnostic NMS function implements a class-agnostic version
|
|
// of Non Maximal Suppression where if max_classes_per_detection=k,
|
|
// 1) we keep the top-k scores for each detection and
|
|
// 2) during NMS, each detection only uses the highest class score for sorting.
|
|
// 3) Compared to regular NMS, the worst runtime of this version is O(N^2)
|
|
// instead of O(KN^2) where N is the number of detections and K the number of
|
|
// classes.
|
|
optional bool use_class_agnostic_nms = 7 [default = false];
|
|
|
|
// Number of classes retained per detection in class agnostic NMS.
|
|
|
|
optional int32 max_classes_per_detection = 8 [default = 1];
|
|
}
|
|
|
|
// Configuration proto for post-processing predicted boxes and
|
|
// scores.
|
|
message PostProcessing {
|
|
// Non max suppression parameters.
|
|
optional BatchNonMaxSuppression batch_non_max_suppression = 1;
|
|
|
|
// Enum to specify how to convert the detection scores.
|
|
enum ScoreConverter {
|
|
// Input scores equals output scores.
|
|
IDENTITY = 0;
|
|
|
|
// Applies a sigmoid on input scores.
|
|
SIGMOID = 1;
|
|
|
|
// Applies a softmax on input scores
|
|
SOFTMAX = 2;
|
|
}
|
|
|
|
// Score converter to use.
|
|
optional ScoreConverter score_converter = 2 [default = IDENTITY];
|
|
// Scale logit (input) value before conversion in post-processing step.
|
|
// Typically used for softmax distillation, though can be used to scale for
|
|
// other reasons.
|
|
optional float logit_scale = 3 [default = 1.0];
|
|
// Calibrate score outputs. Calibration is applied after score converter
|
|
// and before non max suppression.
|
|
optional CalibrationConfig calibration_config = 4;
|
|
}
|