You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

219 lines
9.0 KiB

syntax = "proto2";
package object_detection.protos;
import "object_detection/protos/anchor_generator.proto";
import "object_detection/protos/box_coder.proto";
import "object_detection/protos/box_predictor.proto";
import "object_detection/protos/hyperparams.proto";
import "object_detection/protos/image_resizer.proto";
import "object_detection/protos/losses.proto";
import "object_detection/protos/matcher.proto";
import "object_detection/protos/post_processing.proto";
import "object_detection/protos/region_similarity_calculator.proto";
// Configuration for Single Shot Detection (SSD) models.
// Next id: 26
message Ssd {
// Number of classes to predict.
optional int32 num_classes = 1;
// Image resizer for preprocessing the input image.
optional ImageResizer image_resizer = 2;
// Feature extractor config.
optional SsdFeatureExtractor feature_extractor = 3;
// Box coder to encode the boxes.
optional BoxCoder box_coder = 4;
// Matcher to match groundtruth with anchors.
optional Matcher matcher = 5;
// Region similarity calculator to compute similarity of boxes.
optional RegionSimilarityCalculator similarity_calculator = 6;
// Whether background targets are to be encoded as an all
// zeros vector or a one-hot vector (where background is the 0th class).
optional bool encode_background_as_zeros = 12 [default = false];
// classification weight to be associated to negative
// anchors (default: 1.0). The weight must be in [0., 1.].
optional float negative_class_weight = 13 [default = 1.0];
// Box predictor to attach to the features.
optional BoxPredictor box_predictor = 7;
// Anchor generator to compute anchors.
optional AnchorGenerator anchor_generator = 8;
// Post processing to apply on the predictions.
optional PostProcessing post_processing = 9;
// Whether to normalize the loss by number of groundtruth boxes that match to
// the anchors.
optional bool normalize_loss_by_num_matches = 10 [default = true];
// Whether to normalize the localization loss by the code size of the box
// encodings. This is applied along with other normalization factors.
optional bool normalize_loc_loss_by_codesize = 14 [default = false];
// Loss configuration for training.
optional Loss loss = 11;
// Whether to update batch norm parameters during training or not.
// When training with a relative small batch size (e.g. 1), it is
// desirable to disable batch norm update and use pretrained batch norm
// params.
//
// Note: Some feature extractors are used with canned arg_scopes
// (e.g resnet arg scopes). In these cases training behavior of batch norm
// variables may depend on both values of `batch_norm_trainable` and
// `is_training`.
//
// When canned arg_scopes are used with feature extractors `conv_hyperparams`
// will apply only to the additional layers that are added and are outside the
// canned arg_scope.
optional bool freeze_batchnorm = 16 [default = false];
// Whether to update batch_norm inplace during training. This is required
// for batch norm to work correctly on TPUs. When this is false, user must add
// a control dependency on tf.GraphKeys.UPDATE_OPS for train/loss op in order
// to update the batch norm moving average parameters.
optional bool inplace_batchnorm_update = 15 [default = false];
// Whether to add an implicit background class to one-hot encodings of
// groundtruth labels. Set to false if training a single
// class model or using an explicit background class.
optional bool add_background_class = 21 [default = true];
// Whether to use an explicit background class. Set to true if using
// groundtruth labels with an explicit background class, as in multiclass
// scores.
optional bool explicit_background_class = 24 [default = false];
optional bool use_confidences_as_targets = 22 [default = false];
optional float implicit_example_weight = 23 [default = 1.0];
// Configuration proto for MaskHead.
// Next id: 11
message MaskHead {
// The height and the width of the predicted mask. Only used when
// predict_instance_masks is true.
optional int32 mask_height = 1 [default = 15];
optional int32 mask_width = 2 [default = 15];
// Whether to predict class agnostic masks. Only used when
// predict_instance_masks is true.
optional bool masks_are_class_agnostic = 3 [default = true];
// The depth for the first conv2d_transpose op applied to the
// image_features in the mask prediction branch. If set to 0, the value
// will be set automatically based on the number of channels in the image
// features and the number of classes.
optional int32 mask_prediction_conv_depth = 4 [default = 256];
// The number of convolutions applied to image_features in the mask
// prediction branch.
optional int32 mask_prediction_num_conv_layers = 5 [default = 2];
// Whether to apply convolutions on mask features before upsampling using
// nearest neighbor resizing.
// By default, mask features are resized to [`mask_height`, `mask_width`]
// before applying convolutions and predicting masks.
optional bool convolve_then_upsample_masks = 6 [default = false];
// Mask loss weight.
optional float mask_loss_weight = 7 [default = 5.0];
// Number of boxes to be generated at training time for computing mask loss.
optional int32 mask_loss_sample_size = 8 [default = 16];
// Hyperparameters for convolution ops used in the box predictor.
optional Hyperparams conv_hyperparams = 9;
// Output size (width and height are set to be the same) of the initial
// bilinear interpolation based cropping during ROI pooling. Only used when
// we have second stage prediction head enabled (e.g. mask head).
optional int32 initial_crop_size = 10 [default = 15];
}
// Configs for mask head.
optional MaskHead mask_head_config = 25;
}
message SsdFeatureExtractor {
reserved 6;
// Type of ssd feature extractor.
optional string type = 1;
// The factor to alter the depth of the channels in the feature extractor.
optional float depth_multiplier = 2 [default = 1.0];
// Minimum number of the channels in the feature extractor.
optional int32 min_depth = 3 [default = 16];
// Hyperparameters that affect the layers of feature extractor added on top
// of the base feature extractor.
optional Hyperparams conv_hyperparams = 4;
// Normally, SSD feature extractors are constructed by reusing an existing
// base feature extractor (that has its own hyperparams) and adding new layers
// on top of it. `conv_hyperparams` above normally applies only to the new
// layers while base feature extractor uses its own default hyperparams. If
// this value is set to true, the base feature extractor's hyperparams will be
// overridden with the `conv_hyperparams`.
optional bool override_base_feature_extractor_hyperparams = 9
[default = false];
// The nearest multiple to zero-pad the input height and width dimensions to.
// For example, if pad_to_multiple = 2, input dimensions are zero-padded
// until the resulting dimensions are even.
optional int32 pad_to_multiple = 5 [default = 1];
// Whether to use explicit padding when extracting SSD multiresolution
// features. This will also apply to the base feature extractor if a MobileNet
// architecture is used.
optional bool use_explicit_padding = 7 [default = false];
// Whether to use depthwise separable convolutions for to extract additional
// feature maps added by SSD.
optional bool use_depthwise = 8 [default = false];
// Feature Pyramid Networks config.
optional FeaturePyramidNetworks fpn = 10;
// If true, replace preprocess function of feature extractor with a
// placeholder. This should only be used if all the image preprocessing steps
// happen outside the graph.
optional bool replace_preprocessor_with_placeholder = 11 [default = false];
}
// Configuration for Feature Pyramid Networks.
message FeaturePyramidNetworks {
// We recommend to use multi_resolution_feature_map_generator with FPN, and
// the levels there must match the levels defined below for better
// performance.
// Correspondence from FPN levels to Resnet/Mobilenet V1 feature maps:
// FPN Level Resnet Feature Map Mobilenet-V1 Feature Map
// 2 Block 1 Conv2d_3_pointwise
// 3 Block 2 Conv2d_5_pointwise
// 4 Block 3 Conv2d_11_pointwise
// 5 Block 4 Conv2d_13_pointwise
// 6 Bottomup_5 bottom_up_Conv2d_14
// 7 Bottomup_6 bottom_up_Conv2d_15
// 8 Bottomup_7 bottom_up_Conv2d_16
// 9 Bottomup_8 bottom_up_Conv2d_17
// minimum level in feature pyramid
optional int32 min_level = 1 [default = 3];
// maximum level in feature pyramid
optional int32 max_level = 2 [default = 7];
// channel depth for additional coarse feature layers.
optional int32 additional_layer_depth = 3 [default = 256];
}