|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""object_detection_evaluation module.
|
|
|
|
ObjectDetectionEvaluation is a class which manages ground truth information of a
|
|
object detection dataset, and computes frequently used detection metrics such as
|
|
Precision, Recall, CorLoc of the provided detection results.
|
|
It supports the following operations:
|
|
1) Add ground truth information of images sequentially.
|
|
2) Add detection result of images sequentially.
|
|
3) Evaluate detection metrics on already inserted detection results.
|
|
4) Write evaluation result into a pickle file for future processing or
|
|
visualization.
|
|
|
|
Note: This module operates on numpy boxes and box lists.
|
|
"""
|
|
|
|
from abc import ABCMeta
|
|
from abc import abstractmethod
|
|
import collections
|
|
import logging
|
|
import unicodedata
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from object_detection.core import standard_fields
|
|
from object_detection.utils import label_map_util
|
|
from object_detection.utils import metrics
|
|
from object_detection.utils import per_image_evaluation
|
|
|
|
|
|
class DetectionEvaluator(object):
|
|
"""Interface for object detection evalution classes.
|
|
|
|
Example usage of the Evaluator:
|
|
------------------------------
|
|
evaluator = DetectionEvaluator(categories)
|
|
|
|
# Detections and groundtruth for image 1.
|
|
evaluator.add_single_groundtruth_image_info(...)
|
|
evaluator.add_single_detected_image_info(...)
|
|
|
|
# Detections and groundtruth for image 2.
|
|
evaluator.add_single_groundtruth_image_info(...)
|
|
evaluator.add_single_detected_image_info(...)
|
|
|
|
metrics_dict = evaluator.evaluate()
|
|
"""
|
|
__metaclass__ = ABCMeta
|
|
|
|
def __init__(self, categories):
|
|
"""Constructor.
|
|
|
|
Args:
|
|
categories: A list of dicts, each of which has the following keys -
|
|
'id': (required) an integer id uniquely identifying this category.
|
|
'name': (required) string representing category name e.g., 'cat', 'dog'.
|
|
"""
|
|
self._categories = categories
|
|
|
|
def observe_result_dict_for_single_example(self, eval_dict):
|
|
"""Observes an evaluation result dict for a single example.
|
|
|
|
When executing eagerly, once all observations have been observed by this
|
|
method you can use `.evaluate()` to get the final metrics.
|
|
|
|
When using `tf.estimator.Estimator` for evaluation this function is used by
|
|
`get_estimator_eval_metric_ops()` to construct the metric update op.
|
|
|
|
Args:
|
|
eval_dict: A dictionary that holds tensors for evaluating an object
|
|
detection model, returned from
|
|
eval_util.result_dict_for_single_example().
|
|
|
|
Returns:
|
|
None when executing eagerly, or an update_op that can be used to update
|
|
the eval metrics in `tf.estimator.EstimatorSpec`.
|
|
"""
|
|
raise NotImplementedError('Not implemented for this evaluator!')
|
|
|
|
@abstractmethod
|
|
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
|
|
"""Adds groundtruth for a single image to be used for evaluation.
|
|
|
|
Args:
|
|
image_id: A unique string/integer identifier for the image.
|
|
groundtruth_dict: A dictionary of groundtruth numpy arrays required
|
|
for evaluations.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def add_single_detected_image_info(self, image_id, detections_dict):
|
|
"""Adds detections for a single image to be used for evaluation.
|
|
|
|
Args:
|
|
image_id: A unique string/integer identifier for the image.
|
|
detections_dict: A dictionary of detection numpy arrays required
|
|
for evaluation.
|
|
"""
|
|
pass
|
|
|
|
def get_estimator_eval_metric_ops(self, eval_dict):
|
|
"""Returns dict of metrics to use with `tf.estimator.EstimatorSpec`.
|
|
|
|
Note that this must only be implemented if performing evaluation with a
|
|
`tf.estimator.Estimator`.
|
|
|
|
Args:
|
|
eval_dict: A dictionary that holds tensors for evaluating an object
|
|
detection model, returned from
|
|
eval_util.result_dict_for_single_example().
|
|
|
|
Returns:
|
|
A dictionary of metric names to tuple of value_op and update_op that can
|
|
be used as eval metric ops in `tf.estimator.EstimatorSpec`.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def evaluate(self):
|
|
"""Evaluates detections and returns a dictionary of metrics."""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def clear(self):
|
|
"""Clears the state to prepare for a fresh evaluation."""
|
|
pass
|
|
|
|
|
|
class ObjectDetectionEvaluator(DetectionEvaluator):
|
|
"""A class to evaluate detections."""
|
|
|
|
def __init__(self,
|
|
categories,
|
|
matching_iou_threshold=0.5,
|
|
recall_lower_bound=0.0,
|
|
recall_upper_bound=1.0,
|
|
evaluate_corlocs=False,
|
|
evaluate_precision_recall=False,
|
|
metric_prefix=None,
|
|
use_weighted_mean_ap=False,
|
|
evaluate_masks=False,
|
|
group_of_weight=0.0):
|
|
"""Constructor.
|
|
|
|
Args:
|
|
categories: A list of dicts, each of which has the following keys -
|
|
'id': (required) an integer id uniquely identifying this category.
|
|
'name': (required) string representing category name e.g., 'cat', 'dog'.
|
|
matching_iou_threshold: IOU threshold to use for matching groundtruth
|
|
boxes to detection boxes.
|
|
recall_lower_bound: lower bound of recall operating area.
|
|
recall_upper_bound: upper bound of recall operating area.
|
|
evaluate_corlocs: (optional) boolean which determines if corloc scores
|
|
are to be returned or not.
|
|
evaluate_precision_recall: (optional) boolean which determines if
|
|
precision and recall values are to be returned or not.
|
|
metric_prefix: (optional) string prefix for metric name; if None, no
|
|
prefix is used.
|
|
use_weighted_mean_ap: (optional) boolean which determines if the mean
|
|
average precision is computed directly from the scores and tp_fp_labels
|
|
of all classes.
|
|
evaluate_masks: If False, evaluation will be performed based on boxes.
|
|
If True, mask evaluation will be performed instead.
|
|
group_of_weight: Weight of group-of boxes.If set to 0, detections of the
|
|
correct class within a group-of box are ignored. If weight is > 0, then
|
|
if at least one detection falls within a group-of box with
|
|
matching_iou_threshold, weight group_of_weight is added to true
|
|
positives. Consequently, if no detection falls within a group-of box,
|
|
weight group_of_weight is added to false negatives.
|
|
|
|
Raises:
|
|
ValueError: If the category ids are not 1-indexed.
|
|
"""
|
|
super(ObjectDetectionEvaluator, self).__init__(categories)
|
|
self._num_classes = max([cat['id'] for cat in categories])
|
|
if min(cat['id'] for cat in categories) < 1:
|
|
raise ValueError('Classes should be 1-indexed.')
|
|
self._matching_iou_threshold = matching_iou_threshold
|
|
self._recall_lower_bound = recall_lower_bound
|
|
self._recall_upper_bound = recall_upper_bound
|
|
self._use_weighted_mean_ap = use_weighted_mean_ap
|
|
self._label_id_offset = 1
|
|
self._evaluate_masks = evaluate_masks
|
|
self._group_of_weight = group_of_weight
|
|
self._evaluation = ObjectDetectionEvaluation(
|
|
num_groundtruth_classes=self._num_classes,
|
|
matching_iou_threshold=self._matching_iou_threshold,
|
|
recall_lower_bound=self._recall_lower_bound,
|
|
recall_upper_bound=self._recall_upper_bound,
|
|
use_weighted_mean_ap=self._use_weighted_mean_ap,
|
|
label_id_offset=self._label_id_offset,
|
|
group_of_weight=self._group_of_weight)
|
|
self._image_ids = set([])
|
|
self._evaluate_corlocs = evaluate_corlocs
|
|
self._evaluate_precision_recall = evaluate_precision_recall
|
|
self._metric_prefix = (metric_prefix + '_') if metric_prefix else ''
|
|
self._expected_keys = set([
|
|
standard_fields.InputDataFields.key,
|
|
standard_fields.InputDataFields.groundtruth_boxes,
|
|
standard_fields.InputDataFields.groundtruth_classes,
|
|
standard_fields.InputDataFields.groundtruth_difficult,
|
|
standard_fields.InputDataFields.groundtruth_instance_masks,
|
|
standard_fields.DetectionResultFields.detection_boxes,
|
|
standard_fields.DetectionResultFields.detection_scores,
|
|
standard_fields.DetectionResultFields.detection_classes,
|
|
standard_fields.DetectionResultFields.detection_masks
|
|
])
|
|
self._build_metric_names()
|
|
|
|
def _build_metric_names(self):
|
|
"""Builds a list with metric names."""
|
|
if self._recall_lower_bound > 0.0 or self._recall_upper_bound < 1.0:
|
|
self._metric_names = [
|
|
self._metric_prefix +
|
|
'Precision/mAP@{}IOU@[{:.1f},{:.1f}]Recall'.format(
|
|
self._matching_iou_threshold, self._recall_lower_bound,
|
|
self._recall_upper_bound)
|
|
]
|
|
else:
|
|
self._metric_names = [
|
|
self._metric_prefix +
|
|
'Precision/mAP@{}IOU'.format(self._matching_iou_threshold)
|
|
]
|
|
if self._evaluate_corlocs:
|
|
self._metric_names.append(
|
|
self._metric_prefix +
|
|
'Precision/meanCorLoc@{}IOU'.format(self._matching_iou_threshold))
|
|
|
|
category_index = label_map_util.create_category_index(self._categories)
|
|
for idx in range(self._num_classes):
|
|
if idx + self._label_id_offset in category_index:
|
|
category_name = category_index[idx + self._label_id_offset]['name']
|
|
try:
|
|
category_name = unicode(category_name, 'utf-8')
|
|
except TypeError:
|
|
pass
|
|
category_name = unicodedata.normalize('NFKD', category_name).encode(
|
|
'ascii', 'ignore')
|
|
self._metric_names.append(
|
|
self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format(
|
|
self._matching_iou_threshold, category_name))
|
|
if self._evaluate_corlocs:
|
|
self._metric_names.append(
|
|
self._metric_prefix + 'PerformanceByCategory/CorLoc@{}IOU/{}'
|
|
.format(self._matching_iou_threshold, category_name))
|
|
|
|
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
|
|
"""Adds groundtruth for a single image to be used for evaluation.
|
|
|
|
Args:
|
|
image_id: A unique string/integer identifier for the image.
|
|
groundtruth_dict: A dictionary containing -
|
|
standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
|
|
of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
|
|
the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
|
|
standard_fields.InputDataFields.groundtruth_classes: integer numpy array
|
|
of shape [num_boxes] containing 1-indexed groundtruth classes for the
|
|
boxes.
|
|
standard_fields.InputDataFields.groundtruth_difficult: Optional length
|
|
M numpy boolean array denoting whether a ground truth box is a
|
|
difficult instance or not. This field is optional to support the case
|
|
that no boxes are difficult.
|
|
standard_fields.InputDataFields.groundtruth_instance_masks: Optional
|
|
numpy array of shape [num_boxes, height, width] with values in {0, 1}.
|
|
|
|
Raises:
|
|
ValueError: On adding groundtruth for an image more than once. Will also
|
|
raise error if instance masks are not in groundtruth dictionary.
|
|
"""
|
|
if image_id in self._image_ids:
|
|
raise ValueError('Image with id {} already added.'.format(image_id))
|
|
|
|
groundtruth_classes = (
|
|
groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] -
|
|
self._label_id_offset)
|
|
# If the key is not present in the groundtruth_dict or the array is empty
|
|
# (unless there are no annotations for the groundtruth on this image)
|
|
# use values from the dictionary or insert None otherwise.
|
|
if (standard_fields.InputDataFields.groundtruth_difficult in
|
|
groundtruth_dict.keys() and
|
|
(groundtruth_dict[standard_fields.InputDataFields.groundtruth_difficult]
|
|
.size or not groundtruth_classes.size)):
|
|
groundtruth_difficult = groundtruth_dict[
|
|
standard_fields.InputDataFields.groundtruth_difficult]
|
|
else:
|
|
groundtruth_difficult = None
|
|
if not len(self._image_ids) % 1000:
|
|
logging.warn(
|
|
'image %s does not have groundtruth difficult flag specified',
|
|
image_id)
|
|
groundtruth_masks = None
|
|
if self._evaluate_masks:
|
|
if (standard_fields.InputDataFields.groundtruth_instance_masks not in
|
|
groundtruth_dict):
|
|
raise ValueError('Instance masks not in groundtruth dictionary.')
|
|
groundtruth_masks = groundtruth_dict[
|
|
standard_fields.InputDataFields.groundtruth_instance_masks]
|
|
self._evaluation.add_single_ground_truth_image_info(
|
|
image_key=image_id,
|
|
groundtruth_boxes=groundtruth_dict[
|
|
standard_fields.InputDataFields.groundtruth_boxes],
|
|
groundtruth_class_labels=groundtruth_classes,
|
|
groundtruth_is_difficult_list=groundtruth_difficult,
|
|
groundtruth_masks=groundtruth_masks)
|
|
self._image_ids.update([image_id])
|
|
|
|
def add_single_detected_image_info(self, image_id, detections_dict):
|
|
"""Adds detections for a single image to be used for evaluation.
|
|
|
|
Args:
|
|
image_id: A unique string/integer identifier for the image.
|
|
detections_dict: A dictionary containing -
|
|
standard_fields.DetectionResultFields.detection_boxes: float32 numpy
|
|
array of shape [num_boxes, 4] containing `num_boxes` detection boxes
|
|
of the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
|
|
standard_fields.DetectionResultFields.detection_scores: float32 numpy
|
|
array of shape [num_boxes] containing detection scores for the boxes.
|
|
standard_fields.DetectionResultFields.detection_classes: integer numpy
|
|
array of shape [num_boxes] containing 1-indexed detection classes for
|
|
the boxes.
|
|
standard_fields.DetectionResultFields.detection_masks: uint8 numpy
|
|
array of shape [num_boxes, height, width] containing `num_boxes` masks
|
|
of values ranging between 0 and 1.
|
|
|
|
Raises:
|
|
ValueError: If detection masks are not in detections dictionary.
|
|
"""
|
|
detection_classes = (
|
|
detections_dict[standard_fields.DetectionResultFields.detection_classes]
|
|
- self._label_id_offset)
|
|
detection_masks = None
|
|
if self._evaluate_masks:
|
|
if (standard_fields.DetectionResultFields.detection_masks not in
|
|
detections_dict):
|
|
raise ValueError('Detection masks not in detections dictionary.')
|
|
detection_masks = detections_dict[
|
|
standard_fields.DetectionResultFields.detection_masks]
|
|
self._evaluation.add_single_detected_image_info(
|
|
image_key=image_id,
|
|
detected_boxes=detections_dict[
|
|
standard_fields.DetectionResultFields.detection_boxes],
|
|
detected_scores=detections_dict[
|
|
standard_fields.DetectionResultFields.detection_scores],
|
|
detected_class_labels=detection_classes,
|
|
detected_masks=detection_masks)
|
|
|
|
def evaluate(self):
|
|
"""Compute evaluation result.
|
|
|
|
Returns:
|
|
A dictionary of metrics with the following fields -
|
|
|
|
1. summary_metrics:
|
|
'<prefix if not empty>_Precision/mAP@<matching_iou_threshold>IOU': mean
|
|
average precision at the specified IOU threshold.
|
|
|
|
2. per_category_ap: category specific results with keys of the form
|
|
'<prefix if not empty>_PerformanceByCategory/
|
|
mAP@<matching_iou_threshold>IOU/category'.
|
|
"""
|
|
(per_class_ap, mean_ap, per_class_precision, per_class_recall,
|
|
per_class_corloc, mean_corloc) = (
|
|
self._evaluation.evaluate())
|
|
pascal_metrics = {self._metric_names[0]: mean_ap}
|
|
if self._evaluate_corlocs:
|
|
pascal_metrics[self._metric_names[1]] = mean_corloc
|
|
category_index = label_map_util.create_category_index(self._categories)
|
|
for idx in range(per_class_ap.size):
|
|
if idx + self._label_id_offset in category_index:
|
|
category_name = category_index[idx + self._label_id_offset]['name']
|
|
try:
|
|
category_name = unicode(category_name, 'utf-8')
|
|
except TypeError:
|
|
pass
|
|
category_name = unicodedata.normalize(
|
|
'NFKD', category_name).encode('ascii', 'ignore')
|
|
display_name = (
|
|
self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format(
|
|
self._matching_iou_threshold, category_name))
|
|
pascal_metrics[display_name] = per_class_ap[idx]
|
|
|
|
# Optionally add precision and recall values
|
|
if self._evaluate_precision_recall:
|
|
display_name = (
|
|
self._metric_prefix +
|
|
'PerformanceByCategory/Precision@{}IOU/{}'.format(
|
|
self._matching_iou_threshold, category_name))
|
|
pascal_metrics[display_name] = per_class_precision[idx]
|
|
display_name = (
|
|
self._metric_prefix +
|
|
'PerformanceByCategory/Recall@{}IOU/{}'.format(
|
|
self._matching_iou_threshold, category_name))
|
|
pascal_metrics[display_name] = per_class_recall[idx]
|
|
|
|
# Optionally add CorLoc metrics.classes
|
|
if self._evaluate_corlocs:
|
|
display_name = (
|
|
self._metric_prefix + 'PerformanceByCategory/CorLoc@{}IOU/{}'
|
|
.format(self._matching_iou_threshold, category_name))
|
|
pascal_metrics[display_name] = per_class_corloc[idx]
|
|
|
|
return pascal_metrics
|
|
|
|
def clear(self):
|
|
"""Clears the state to prepare for a fresh evaluation."""
|
|
self._evaluation = ObjectDetectionEvaluation(
|
|
num_groundtruth_classes=self._num_classes,
|
|
matching_iou_threshold=self._matching_iou_threshold,
|
|
use_weighted_mean_ap=self._use_weighted_mean_ap,
|
|
label_id_offset=self._label_id_offset)
|
|
self._image_ids.clear()
|
|
|
|
def get_estimator_eval_metric_ops(self, eval_dict):
|
|
"""Returns dict of metrics to use with `tf.estimator.EstimatorSpec`.
|
|
|
|
Note that this must only be implemented if performing evaluation with a
|
|
`tf.estimator.Estimator`.
|
|
|
|
Args:
|
|
eval_dict: A dictionary that holds tensors for evaluating an object
|
|
detection model, returned from
|
|
eval_util.result_dict_for_single_example(). It must contain
|
|
standard_fields.InputDataFields.key.
|
|
|
|
Returns:
|
|
A dictionary of metric names to tuple of value_op and update_op that can
|
|
be used as eval metric ops in `tf.estimator.EstimatorSpec`.
|
|
"""
|
|
# remove unexpected fields
|
|
eval_dict_filtered = dict()
|
|
for key, value in eval_dict.items():
|
|
if key in self._expected_keys:
|
|
eval_dict_filtered[key] = value
|
|
|
|
eval_dict_keys = eval_dict_filtered.keys()
|
|
|
|
def update_op(image_id, *eval_dict_batched_as_list):
|
|
"""Update operation that adds batch of images to ObjectDetectionEvaluator.
|
|
|
|
Args:
|
|
image_id: image id (single id or an array)
|
|
*eval_dict_batched_as_list: the values of the dictionary of tensors.
|
|
"""
|
|
if np.isscalar(image_id):
|
|
single_example_dict = dict(
|
|
zip(eval_dict_keys, eval_dict_batched_as_list))
|
|
self.add_single_ground_truth_image_info(image_id, single_example_dict)
|
|
self.add_single_detected_image_info(image_id, single_example_dict)
|
|
else:
|
|
for unzipped_tuple in zip(*eval_dict_batched_as_list):
|
|
single_example_dict = dict(zip(eval_dict_keys, unzipped_tuple))
|
|
image_id = single_example_dict[standard_fields.InputDataFields.key]
|
|
self.add_single_ground_truth_image_info(image_id, single_example_dict)
|
|
self.add_single_detected_image_info(image_id, single_example_dict)
|
|
|
|
args = [eval_dict_filtered[standard_fields.InputDataFields.key]]
|
|
args.extend(eval_dict_filtered.values())
|
|
update_op = tf.py_func(update_op, args, [])
|
|
|
|
def first_value_func():
|
|
self._metrics = self.evaluate()
|
|
self.clear()
|
|
return np.float32(self._metrics[self._metric_names[0]])
|
|
|
|
def value_func_factory(metric_name):
|
|
|
|
def value_func():
|
|
return np.float32(self._metrics[metric_name])
|
|
|
|
return value_func
|
|
|
|
# Ensure that the metrics are only evaluated once.
|
|
first_value_op = tf.py_func(first_value_func, [], tf.float32)
|
|
eval_metric_ops = {self._metric_names[0]: (first_value_op, update_op)}
|
|
with tf.control_dependencies([first_value_op]):
|
|
for metric_name in self._metric_names[1:]:
|
|
eval_metric_ops[metric_name] = (tf.py_func(
|
|
value_func_factory(metric_name), [], np.float32), update_op)
|
|
return eval_metric_ops
|
|
|
|
|
|
class PascalDetectionEvaluator(ObjectDetectionEvaluator):
|
|
"""A class to evaluate detections using PASCAL metrics."""
|
|
|
|
def __init__(self, categories, matching_iou_threshold=0.5):
|
|
super(PascalDetectionEvaluator, self).__init__(
|
|
categories,
|
|
matching_iou_threshold=matching_iou_threshold,
|
|
evaluate_corlocs=False,
|
|
metric_prefix='PascalBoxes',
|
|
use_weighted_mean_ap=False)
|
|
|
|
|
|
class WeightedPascalDetectionEvaluator(ObjectDetectionEvaluator):
|
|
"""A class to evaluate detections using weighted PASCAL metrics.
|
|
|
|
Weighted PASCAL metrics computes the mean average precision as the average
|
|
precision given the scores and tp_fp_labels of all classes. In comparison,
|
|
PASCAL metrics computes the mean average precision as the mean of the
|
|
per-class average precisions.
|
|
|
|
This definition is very similar to the mean of the per-class average
|
|
precisions weighted by class frequency. However, they are typically not the
|
|
same as the average precision is not a linear function of the scores and
|
|
tp_fp_labels.
|
|
"""
|
|
|
|
def __init__(self, categories, matching_iou_threshold=0.5):
|
|
super(WeightedPascalDetectionEvaluator, self).__init__(
|
|
categories,
|
|
matching_iou_threshold=matching_iou_threshold,
|
|
evaluate_corlocs=False,
|
|
metric_prefix='WeightedPascalBoxes',
|
|
use_weighted_mean_ap=True)
|
|
|
|
|
|
class PrecisionAtRecallDetectionEvaluator(ObjectDetectionEvaluator):
|
|
"""A class to evaluate detections using precision@recall metrics."""
|
|
|
|
def __init__(self,
|
|
categories,
|
|
matching_iou_threshold=0.5,
|
|
recall_lower_bound=0.0,
|
|
recall_upper_bound=1.0):
|
|
super(PrecisionAtRecallDetectionEvaluator, self).__init__(
|
|
categories,
|
|
matching_iou_threshold=matching_iou_threshold,
|
|
recall_lower_bound=recall_lower_bound,
|
|
recall_upper_bound=recall_upper_bound,
|
|
evaluate_corlocs=False,
|
|
metric_prefix='PrecisionAtRecallBoxes',
|
|
use_weighted_mean_ap=False)
|
|
|
|
|
|
class PascalInstanceSegmentationEvaluator(ObjectDetectionEvaluator):
|
|
"""A class to evaluate instance masks using PASCAL metrics."""
|
|
|
|
def __init__(self, categories, matching_iou_threshold=0.5):
|
|
super(PascalInstanceSegmentationEvaluator, self).__init__(
|
|
categories,
|
|
matching_iou_threshold=matching_iou_threshold,
|
|
evaluate_corlocs=False,
|
|
metric_prefix='PascalMasks',
|
|
use_weighted_mean_ap=False,
|
|
evaluate_masks=True)
|
|
|
|
|
|
class WeightedPascalInstanceSegmentationEvaluator(ObjectDetectionEvaluator):
|
|
"""A class to evaluate instance masks using weighted PASCAL metrics.
|
|
|
|
Weighted PASCAL metrics computes the mean average precision as the average
|
|
precision given the scores and tp_fp_labels of all classes. In comparison,
|
|
PASCAL metrics computes the mean average precision as the mean of the
|
|
per-class average precisions.
|
|
|
|
This definition is very similar to the mean of the per-class average
|
|
precisions weighted by class frequency. However, they are typically not the
|
|
same as the average precision is not a linear function of the scores and
|
|
tp_fp_labels.
|
|
"""
|
|
|
|
def __init__(self, categories, matching_iou_threshold=0.5):
|
|
super(WeightedPascalInstanceSegmentationEvaluator, self).__init__(
|
|
categories,
|
|
matching_iou_threshold=matching_iou_threshold,
|
|
evaluate_corlocs=False,
|
|
metric_prefix='WeightedPascalMasks',
|
|
use_weighted_mean_ap=True,
|
|
evaluate_masks=True)
|
|
|
|
|
|
class OpenImagesDetectionEvaluator(ObjectDetectionEvaluator):
|
|
"""A class to evaluate detections using Open Images V2 metrics.
|
|
|
|
Open Images V2 introduce group_of type of bounding boxes and this metric
|
|
handles those boxes appropriately.
|
|
"""
|
|
|
|
def __init__(self,
|
|
categories,
|
|
matching_iou_threshold=0.5,
|
|
evaluate_masks=False,
|
|
evaluate_corlocs=False,
|
|
metric_prefix='OpenImagesV2',
|
|
group_of_weight=0.0):
|
|
"""Constructor.
|
|
|
|
Args:
|
|
categories: A list of dicts, each of which has the following keys -
|
|
'id': (required) an integer id uniquely identifying this category.
|
|
'name': (required) string representing category name e.g., 'cat', 'dog'.
|
|
matching_iou_threshold: IOU threshold to use for matching groundtruth
|
|
boxes to detection boxes.
|
|
evaluate_masks: if True, evaluator evaluates masks.
|
|
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
|
|
metric_prefix: Prefix name of the metric.
|
|
group_of_weight: Weight of the group-of bounding box. If set to 0 (default
|
|
for Open Images V2 detection protocol), detections of the correct class
|
|
within a group-of box are ignored. If weight is > 0, then if at least
|
|
one detection falls within a group-of box with matching_iou_threshold,
|
|
weight group_of_weight is added to true positives. Consequently, if no
|
|
detection falls within a group-of box, weight group_of_weight is added
|
|
to false negatives.
|
|
"""
|
|
|
|
super(OpenImagesDetectionEvaluator, self).__init__(
|
|
categories,
|
|
matching_iou_threshold,
|
|
evaluate_corlocs,
|
|
metric_prefix=metric_prefix,
|
|
group_of_weight=group_of_weight,
|
|
evaluate_masks=evaluate_masks)
|
|
self._expected_keys = set([
|
|
standard_fields.InputDataFields.key,
|
|
standard_fields.InputDataFields.groundtruth_boxes,
|
|
standard_fields.InputDataFields.groundtruth_classes,
|
|
standard_fields.InputDataFields.groundtruth_group_of,
|
|
standard_fields.DetectionResultFields.detection_boxes,
|
|
standard_fields.DetectionResultFields.detection_scores,
|
|
standard_fields.DetectionResultFields.detection_classes,
|
|
])
|
|
if evaluate_masks:
|
|
self._expected_keys.add(
|
|
standard_fields.InputDataFields.groundtruth_instance_masks)
|
|
self._expected_keys.add(
|
|
standard_fields.DetectionResultFields.detection_masks)
|
|
|
|
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
|
|
"""Adds groundtruth for a single image to be used for evaluation.
|
|
|
|
Args:
|
|
image_id: A unique string/integer identifier for the image.
|
|
groundtruth_dict: A dictionary containing -
|
|
standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
|
|
of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
|
|
the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
|
|
standard_fields.InputDataFields.groundtruth_classes: integer numpy array
|
|
of shape [num_boxes] containing 1-indexed groundtruth classes for the
|
|
boxes.
|
|
standard_fields.InputDataFields.groundtruth_group_of: Optional length
|
|
M numpy boolean array denoting whether a groundtruth box contains a
|
|
group of instances.
|
|
|
|
Raises:
|
|
ValueError: On adding groundtruth for an image more than once.
|
|
"""
|
|
if image_id in self._image_ids:
|
|
raise ValueError('Image with id {} already added.'.format(image_id))
|
|
|
|
groundtruth_classes = (
|
|
groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] -
|
|
self._label_id_offset)
|
|
# If the key is not present in the groundtruth_dict or the array is empty
|
|
# (unless there are no annotations for the groundtruth on this image)
|
|
# use values from the dictionary or insert None otherwise.
|
|
if (standard_fields.InputDataFields.groundtruth_group_of in
|
|
groundtruth_dict.keys() and
|
|
(groundtruth_dict[standard_fields.InputDataFields.groundtruth_group_of]
|
|
.size or not groundtruth_classes.size)):
|
|
groundtruth_group_of = groundtruth_dict[
|
|
standard_fields.InputDataFields.groundtruth_group_of]
|
|
else:
|
|
groundtruth_group_of = None
|
|
if not len(self._image_ids) % 1000:
|
|
logging.warn(
|
|
'image %s does not have groundtruth group_of flag specified',
|
|
image_id)
|
|
if self._evaluate_masks:
|
|
groundtruth_masks = groundtruth_dict[
|
|
standard_fields.InputDataFields.groundtruth_instance_masks]
|
|
else:
|
|
groundtruth_masks = None
|
|
|
|
self._evaluation.add_single_ground_truth_image_info(
|
|
image_id,
|
|
groundtruth_dict[standard_fields.InputDataFields.groundtruth_boxes],
|
|
groundtruth_classes,
|
|
groundtruth_is_difficult_list=None,
|
|
groundtruth_is_group_of_list=groundtruth_group_of,
|
|
groundtruth_masks=groundtruth_masks)
|
|
self._image_ids.update([image_id])
|
|
|
|
|
|
class OpenImagesChallengeEvaluator(OpenImagesDetectionEvaluator):
|
|
"""A class implements Open Images Challenge metrics.
|
|
|
|
Both Detection and Instance Segmentation evaluation metrics are implemented.
|
|
|
|
Open Images Challenge Detection metric has two major changes in comparison
|
|
with Open Images V2 detection metric:
|
|
- a custom weight might be specified for detecting an object contained in
|
|
a group-of box.
|
|
- verified image-level labels should be explicitelly provided for
|
|
evaluation: in case in image has neither positive nor negative image level
|
|
label of class c, all detections of this class on this image will be
|
|
ignored.
|
|
|
|
Open Images Challenge Instance Segmentation metric allows to measure per
|
|
formance of models in case of incomplete annotations: some instances are
|
|
annotations only on box level and some - on image-level. In addition,
|
|
image-level labels are taken into account as in detection metric.
|
|
|
|
Open Images Challenge Detection metric default parameters:
|
|
evaluate_masks = False
|
|
group_of_weight = 1.0
|
|
|
|
|
|
Open Images Challenge Instance Segmentation metric default parameters:
|
|
evaluate_masks = True
|
|
(group_of_weight will not matter)
|
|
"""
|
|
|
|
def __init__(self,
|
|
categories,
|
|
evaluate_masks=False,
|
|
matching_iou_threshold=0.5,
|
|
evaluate_corlocs=False,
|
|
group_of_weight=1.0):
|
|
"""Constructor.
|
|
|
|
Args:
|
|
categories: A list of dicts, each of which has the following keys -
|
|
'id': (required) an integer id uniquely identifying this category.
|
|
'name': (required) string representing category name e.g., 'cat', 'dog'.
|
|
evaluate_masks: set to true for instance segmentation metric and to false
|
|
for detection metric.
|
|
matching_iou_threshold: IOU threshold to use for matching groundtruth
|
|
boxes to detection boxes.
|
|
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
|
|
group_of_weight: weight of a group-of box. If set to 0, detections of the
|
|
correct class within a group-of box are ignored. If weight is > 0
|
|
(default for Open Images Detection Challenge), then if at least one
|
|
detection falls within a group-of box with matching_iou_threshold,
|
|
weight group_of_weight is added to true positives. Consequently, if no
|
|
detection falls within a group-of box, weight group_of_weight is added
|
|
to false negatives.
|
|
"""
|
|
if not evaluate_masks:
|
|
metrics_prefix = 'OpenImagesDetectionChallenge'
|
|
else:
|
|
metrics_prefix = 'OpenImagesInstanceSegmentationChallenge'
|
|
super(OpenImagesChallengeEvaluator, self).__init__(
|
|
categories,
|
|
matching_iou_threshold,
|
|
evaluate_masks=evaluate_masks,
|
|
evaluate_corlocs=evaluate_corlocs,
|
|
group_of_weight=group_of_weight,
|
|
metric_prefix=metrics_prefix)
|
|
|
|
self._evaluatable_labels = {}
|
|
self._expected_keys.add(
|
|
standard_fields.InputDataFields.groundtruth_image_classes)
|
|
|
|
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
|
|
"""Adds groundtruth for a single image to be used for evaluation.
|
|
|
|
Args:
|
|
image_id: A unique string/integer identifier for the image.
|
|
groundtruth_dict: A dictionary containing -
|
|
standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
|
|
of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
|
|
the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
|
|
standard_fields.InputDataFields.groundtruth_classes: integer numpy array
|
|
of shape [num_boxes] containing 1-indexed groundtruth classes for the
|
|
boxes.
|
|
standard_fields.InputDataFields.groundtruth_image_classes: integer 1D
|
|
numpy array containing all classes for which labels are verified.
|
|
standard_fields.InputDataFields.groundtruth_group_of: Optional length
|
|
M numpy boolean array denoting whether a groundtruth box contains a
|
|
group of instances.
|
|
|
|
Raises:
|
|
ValueError: On adding groundtruth for an image more than once.
|
|
"""
|
|
super(OpenImagesChallengeEvaluator,
|
|
self).add_single_ground_truth_image_info(image_id, groundtruth_dict)
|
|
groundtruth_classes = (
|
|
groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] -
|
|
self._label_id_offset)
|
|
self._evaluatable_labels[image_id] = np.unique(
|
|
np.concatenate(((groundtruth_dict.get(
|
|
standard_fields.InputDataFields.groundtruth_image_classes,
|
|
np.array([], dtype=int)) - self._label_id_offset),
|
|
groundtruth_classes)))
|
|
|
|
def add_single_detected_image_info(self, image_id, detections_dict):
|
|
"""Adds detections for a single image to be used for evaluation.
|
|
|
|
Args:
|
|
image_id: A unique string/integer identifier for the image.
|
|
detections_dict: A dictionary containing -
|
|
standard_fields.DetectionResultFields.detection_boxes: float32 numpy
|
|
array of shape [num_boxes, 4] containing `num_boxes` detection boxes
|
|
of the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
|
|
standard_fields.DetectionResultFields.detection_scores: float32 numpy
|
|
array of shape [num_boxes] containing detection scores for the boxes.
|
|
standard_fields.DetectionResultFields.detection_classes: integer numpy
|
|
array of shape [num_boxes] containing 1-indexed detection classes for
|
|
the boxes.
|
|
|
|
Raises:
|
|
ValueError: If detection masks are not in detections dictionary.
|
|
"""
|
|
if image_id not in self._image_ids:
|
|
# Since for the correct work of evaluator it is assumed that groundtruth
|
|
# is inserted first we make sure to break the code if is it not the case.
|
|
self._image_ids.update([image_id])
|
|
self._evaluatable_labels[image_id] = np.array([])
|
|
|
|
detection_classes = (
|
|
detections_dict[standard_fields.DetectionResultFields.detection_classes]
|
|
- self._label_id_offset)
|
|
allowed_classes = np.where(
|
|
np.isin(detection_classes, self._evaluatable_labels[image_id]))
|
|
detection_classes = detection_classes[allowed_classes]
|
|
detected_boxes = detections_dict[
|
|
standard_fields.DetectionResultFields.detection_boxes][allowed_classes]
|
|
detected_scores = detections_dict[
|
|
standard_fields.DetectionResultFields.detection_scores][allowed_classes]
|
|
|
|
if self._evaluate_masks:
|
|
detection_masks = detections_dict[standard_fields.DetectionResultFields
|
|
.detection_masks][allowed_classes]
|
|
else:
|
|
detection_masks = None
|
|
self._evaluation.add_single_detected_image_info(
|
|
image_key=image_id,
|
|
detected_boxes=detected_boxes,
|
|
detected_scores=detected_scores,
|
|
detected_class_labels=detection_classes,
|
|
detected_masks=detection_masks)
|
|
|
|
def clear(self):
|
|
"""Clears stored data."""
|
|
|
|
super(OpenImagesChallengeEvaluator, self).clear()
|
|
self._evaluatable_labels.clear()
|
|
|
|
|
|
ObjectDetectionEvalMetrics = collections.namedtuple(
|
|
'ObjectDetectionEvalMetrics', [
|
|
'average_precisions', 'mean_ap', 'precisions', 'recalls', 'corlocs',
|
|
'mean_corloc'
|
|
])
|
|
|
|
|
|
class OpenImagesDetectionChallengeEvaluator(OpenImagesChallengeEvaluator):
|
|
"""A class implements Open Images Detection Challenge metric."""
|
|
|
|
def __init__(self,
|
|
categories,
|
|
matching_iou_threshold=0.5,
|
|
evaluate_corlocs=False,
|
|
group_of_weight=1.0):
|
|
"""Constructor.
|
|
|
|
Args:
|
|
categories: A list of dicts, each of which has the following keys -
|
|
'id': (required) an integer id uniquely identifying this category.
|
|
'name': (required) string representing category name e.g., 'cat', 'dog'.
|
|
matching_iou_threshold: IOU threshold to use for matching groundtruth
|
|
boxes to detection boxes.
|
|
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
|
|
group_of_weight: weight of a group-of box. If set to 0, detections of the
|
|
correct class within a group-of box are ignored. If weight is > 0
|
|
(default for Open Images Detection Challenge), then if at least one
|
|
detection falls within a group-of box with matching_iou_threshold,
|
|
weight group_of_weight is added to true positives. Consequently, if no
|
|
detection falls within a group-of box, weight group_of_weight is added
|
|
to false negatives.
|
|
"""
|
|
super(OpenImagesDetectionChallengeEvaluator, self).__init__(
|
|
categories=categories,
|
|
evaluate_masks=False,
|
|
matching_iou_threshold=matching_iou_threshold,
|
|
evaluate_corlocs=False,
|
|
group_of_weight=1.0)
|
|
|
|
|
|
class OpenImagesInstanceSegmentationChallengeEvaluator(
|
|
OpenImagesChallengeEvaluator):
|
|
"""A class implements Open Images Instance Segmentation Challenge metric."""
|
|
|
|
def __init__(self,
|
|
categories,
|
|
matching_iou_threshold=0.5,
|
|
evaluate_corlocs=False,
|
|
group_of_weight=1.0):
|
|
"""Constructor.
|
|
|
|
Args:
|
|
categories: A list of dicts, each of which has the following keys -
|
|
'id': (required) an integer id uniquely identifying this category.
|
|
'name': (required) string representing category name e.g., 'cat', 'dog'.
|
|
matching_iou_threshold: IOU threshold to use for matching groundtruth
|
|
boxes to detection boxes.
|
|
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
|
|
group_of_weight: weight of a group-of box. If set to 0, detections of the
|
|
correct class within a group-of box are ignored. If weight is > 0
|
|
(default for Open Images Detection Challenge), then if at least one
|
|
detection falls within a group-of box with matching_iou_threshold,
|
|
weight group_of_weight is added to true positives. Consequently, if no
|
|
detection falls within a group-of box, weight group_of_weight is added
|
|
to false negatives.
|
|
"""
|
|
super(OpenImagesInstanceSegmentationChallengeEvaluator, self).__init__(
|
|
categories=categories,
|
|
evaluate_masks=True,
|
|
matching_iou_threshold=matching_iou_threshold,
|
|
evaluate_corlocs=False,
|
|
group_of_weight=1.0)
|
|
|
|
|
|
class ObjectDetectionEvaluation(object):
|
|
"""Internal implementation of Pascal object detection metrics."""
|
|
|
|
def __init__(self,
|
|
num_groundtruth_classes,
|
|
matching_iou_threshold=0.5,
|
|
nms_iou_threshold=1.0,
|
|
nms_max_output_boxes=10000,
|
|
recall_lower_bound=0.0,
|
|
recall_upper_bound=1.0,
|
|
use_weighted_mean_ap=False,
|
|
label_id_offset=0,
|
|
group_of_weight=0.0,
|
|
per_image_eval_class=per_image_evaluation.PerImageEvaluation):
|
|
"""Constructor.
|
|
|
|
Args:
|
|
num_groundtruth_classes: Number of ground-truth classes.
|
|
matching_iou_threshold: IOU threshold used for matching detected boxes
|
|
to ground-truth boxes.
|
|
nms_iou_threshold: IOU threshold used for non-maximum suppression.
|
|
nms_max_output_boxes: Maximum number of boxes returned by non-maximum
|
|
suppression.
|
|
recall_lower_bound: lower bound of recall operating area
|
|
recall_upper_bound: upper bound of recall operating area
|
|
use_weighted_mean_ap: (optional) boolean which determines if the mean
|
|
average precision is computed directly from the scores and tp_fp_labels
|
|
of all classes.
|
|
label_id_offset: The label id offset.
|
|
group_of_weight: Weight of group-of boxes.If set to 0, detections of the
|
|
correct class within a group-of box are ignored. If weight is > 0, then
|
|
if at least one detection falls within a group-of box with
|
|
matching_iou_threshold, weight group_of_weight is added to true
|
|
positives. Consequently, if no detection falls within a group-of box,
|
|
weight group_of_weight is added to false negatives.
|
|
per_image_eval_class: The class that contains functions for computing
|
|
per image metrics.
|
|
|
|
Raises:
|
|
ValueError: if num_groundtruth_classes is smaller than 1.
|
|
"""
|
|
if num_groundtruth_classes < 1:
|
|
raise ValueError('Need at least 1 groundtruth class for evaluation.')
|
|
|
|
self.per_image_eval = per_image_eval_class(
|
|
num_groundtruth_classes=num_groundtruth_classes,
|
|
matching_iou_threshold=matching_iou_threshold,
|
|
nms_iou_threshold=nms_iou_threshold,
|
|
nms_max_output_boxes=nms_max_output_boxes,
|
|
group_of_weight=group_of_weight)
|
|
self.recall_lower_bound = recall_lower_bound
|
|
self.recall_upper_bound = recall_upper_bound
|
|
self.group_of_weight = group_of_weight
|
|
self.num_class = num_groundtruth_classes
|
|
self.use_weighted_mean_ap = use_weighted_mean_ap
|
|
self.label_id_offset = label_id_offset
|
|
|
|
self.groundtruth_boxes = {}
|
|
self.groundtruth_class_labels = {}
|
|
self.groundtruth_masks = {}
|
|
self.groundtruth_is_difficult_list = {}
|
|
self.groundtruth_is_group_of_list = {}
|
|
self.num_gt_instances_per_class = np.zeros(self.num_class, dtype=float)
|
|
self.num_gt_imgs_per_class = np.zeros(self.num_class, dtype=int)
|
|
|
|
self._initialize_detections()
|
|
|
|
def _initialize_detections(self):
|
|
"""Initializes internal data structures."""
|
|
self.detection_keys = set()
|
|
self.scores_per_class = [[] for _ in range(self.num_class)]
|
|
self.tp_fp_labels_per_class = [[] for _ in range(self.num_class)]
|
|
self.num_images_correctly_detected_per_class = np.zeros(self.num_class)
|
|
self.average_precision_per_class = np.empty(self.num_class, dtype=float)
|
|
self.average_precision_per_class.fill(np.nan)
|
|
self.precisions_per_class = [np.nan] * self.num_class
|
|
self.recalls_per_class = [np.nan] * self.num_class
|
|
|
|
self.corloc_per_class = np.ones(self.num_class, dtype=float)
|
|
|
|
def clear_detections(self):
|
|
self._initialize_detections()
|
|
|
|
def add_single_ground_truth_image_info(self,
|
|
image_key,
|
|
groundtruth_boxes,
|
|
groundtruth_class_labels,
|
|
groundtruth_is_difficult_list=None,
|
|
groundtruth_is_group_of_list=None,
|
|
groundtruth_masks=None):
|
|
"""Adds groundtruth for a single image to be used for evaluation.
|
|
|
|
Args:
|
|
image_key: A unique string/integer identifier for the image.
|
|
groundtruth_boxes: float32 numpy array of shape [num_boxes, 4]
|
|
containing `num_boxes` groundtruth boxes of the format
|
|
[ymin, xmin, ymax, xmax] in absolute image coordinates.
|
|
groundtruth_class_labels: integer numpy array of shape [num_boxes]
|
|
containing 0-indexed groundtruth classes for the boxes.
|
|
groundtruth_is_difficult_list: A length M numpy boolean array denoting
|
|
whether a ground truth box is a difficult instance or not. To support
|
|
the case that no boxes are difficult, it is by default set as None.
|
|
groundtruth_is_group_of_list: A length M numpy boolean array denoting
|
|
whether a ground truth box is a group-of box or not. To support
|
|
the case that no boxes are groups-of, it is by default set as None.
|
|
groundtruth_masks: uint8 numpy array of shape
|
|
[num_boxes, height, width] containing `num_boxes` groundtruth masks.
|
|
The mask values range from 0 to 1.
|
|
"""
|
|
if image_key in self.groundtruth_boxes:
|
|
logging.warn(
|
|
'image %s has already been added to the ground truth database.',
|
|
image_key)
|
|
return
|
|
|
|
self.groundtruth_boxes[image_key] = groundtruth_boxes
|
|
self.groundtruth_class_labels[image_key] = groundtruth_class_labels
|
|
self.groundtruth_masks[image_key] = groundtruth_masks
|
|
if groundtruth_is_difficult_list is None:
|
|
num_boxes = groundtruth_boxes.shape[0]
|
|
groundtruth_is_difficult_list = np.zeros(num_boxes, dtype=bool)
|
|
self.groundtruth_is_difficult_list[
|
|
image_key] = groundtruth_is_difficult_list.astype(dtype=bool)
|
|
if groundtruth_is_group_of_list is None:
|
|
num_boxes = groundtruth_boxes.shape[0]
|
|
groundtruth_is_group_of_list = np.zeros(num_boxes, dtype=bool)
|
|
self.groundtruth_is_group_of_list[
|
|
image_key] = groundtruth_is_group_of_list.astype(dtype=bool)
|
|
|
|
self._update_ground_truth_statistics(
|
|
groundtruth_class_labels,
|
|
groundtruth_is_difficult_list.astype(dtype=bool),
|
|
groundtruth_is_group_of_list.astype(dtype=bool))
|
|
|
|
def add_single_detected_image_info(self, image_key, detected_boxes,
|
|
detected_scores, detected_class_labels,
|
|
detected_masks=None):
|
|
"""Adds detections for a single image to be used for evaluation.
|
|
|
|
Args:
|
|
image_key: A unique string/integer identifier for the image.
|
|
detected_boxes: float32 numpy array of shape [num_boxes, 4]
|
|
containing `num_boxes` detection boxes of the format
|
|
[ymin, xmin, ymax, xmax] in absolute image coordinates.
|
|
detected_scores: float32 numpy array of shape [num_boxes] containing
|
|
detection scores for the boxes.
|
|
detected_class_labels: integer numpy array of shape [num_boxes] containing
|
|
0-indexed detection classes for the boxes.
|
|
detected_masks: np.uint8 numpy array of shape [num_boxes, height, width]
|
|
containing `num_boxes` detection masks with values ranging
|
|
between 0 and 1.
|
|
|
|
Raises:
|
|
ValueError: if the number of boxes, scores and class labels differ in
|
|
length.
|
|
"""
|
|
if (len(detected_boxes) != len(detected_scores) or
|
|
len(detected_boxes) != len(detected_class_labels)):
|
|
raise ValueError('detected_boxes, detected_scores and '
|
|
'detected_class_labels should all have same lengths. Got'
|
|
'[%d, %d, %d]' % len(detected_boxes),
|
|
len(detected_scores), len(detected_class_labels))
|
|
|
|
if image_key in self.detection_keys:
|
|
logging.warn(
|
|
'image %s has already been added to the detection result database',
|
|
image_key)
|
|
return
|
|
|
|
self.detection_keys.add(image_key)
|
|
if image_key in self.groundtruth_boxes:
|
|
groundtruth_boxes = self.groundtruth_boxes[image_key]
|
|
groundtruth_class_labels = self.groundtruth_class_labels[image_key]
|
|
# Masks are popped instead of look up. The reason is that we do not want
|
|
# to keep all masks in memory which can cause memory overflow.
|
|
groundtruth_masks = self.groundtruth_masks.pop(
|
|
image_key)
|
|
groundtruth_is_difficult_list = self.groundtruth_is_difficult_list[
|
|
image_key]
|
|
groundtruth_is_group_of_list = self.groundtruth_is_group_of_list[
|
|
image_key]
|
|
else:
|
|
groundtruth_boxes = np.empty(shape=[0, 4], dtype=float)
|
|
groundtruth_class_labels = np.array([], dtype=int)
|
|
if detected_masks is None:
|
|
groundtruth_masks = None
|
|
else:
|
|
groundtruth_masks = np.empty(shape=[0, 1, 1], dtype=float)
|
|
groundtruth_is_difficult_list = np.array([], dtype=bool)
|
|
groundtruth_is_group_of_list = np.array([], dtype=bool)
|
|
scores, tp_fp_labels, is_class_correctly_detected_in_image = (
|
|
self.per_image_eval.compute_object_detection_metrics(
|
|
detected_boxes=detected_boxes,
|
|
detected_scores=detected_scores,
|
|
detected_class_labels=detected_class_labels,
|
|
groundtruth_boxes=groundtruth_boxes,
|
|
groundtruth_class_labels=groundtruth_class_labels,
|
|
groundtruth_is_difficult_list=groundtruth_is_difficult_list,
|
|
groundtruth_is_group_of_list=groundtruth_is_group_of_list,
|
|
detected_masks=detected_masks,
|
|
groundtruth_masks=groundtruth_masks))
|
|
|
|
for i in range(self.num_class):
|
|
if scores[i].shape[0] > 0:
|
|
self.scores_per_class[i].append(scores[i])
|
|
self.tp_fp_labels_per_class[i].append(tp_fp_labels[i])
|
|
(self.num_images_correctly_detected_per_class
|
|
) += is_class_correctly_detected_in_image
|
|
|
|
def _update_ground_truth_statistics(self, groundtruth_class_labels,
|
|
groundtruth_is_difficult_list,
|
|
groundtruth_is_group_of_list):
|
|
"""Update grouth truth statitistics.
|
|
|
|
1. Difficult boxes are ignored when counting the number of ground truth
|
|
instances as done in Pascal VOC devkit.
|
|
2. Difficult boxes are treated as normal boxes when computing CorLoc related
|
|
statitistics.
|
|
|
|
Args:
|
|
groundtruth_class_labels: An integer numpy array of length M,
|
|
representing M class labels of object instances in ground truth
|
|
groundtruth_is_difficult_list: A boolean numpy array of length M denoting
|
|
whether a ground truth box is a difficult instance or not
|
|
groundtruth_is_group_of_list: A boolean numpy array of length M denoting
|
|
whether a ground truth box is a group-of box or not
|
|
"""
|
|
for class_index in range(self.num_class):
|
|
num_gt_instances = np.sum(groundtruth_class_labels[
|
|
~groundtruth_is_difficult_list
|
|
& ~groundtruth_is_group_of_list] == class_index)
|
|
num_groupof_gt_instances = self.group_of_weight * np.sum(
|
|
groundtruth_class_labels[groundtruth_is_group_of_list] == class_index)
|
|
self.num_gt_instances_per_class[
|
|
class_index] += num_gt_instances + num_groupof_gt_instances
|
|
if np.any(groundtruth_class_labels == class_index):
|
|
self.num_gt_imgs_per_class[class_index] += 1
|
|
|
|
def evaluate(self):
|
|
"""Compute evaluation result.
|
|
|
|
Returns:
|
|
A named tuple with the following fields -
|
|
average_precision: float numpy array of average precision for
|
|
each class.
|
|
mean_ap: mean average precision of all classes, float scalar
|
|
precisions: List of precisions, each precision is a float numpy
|
|
array
|
|
recalls: List of recalls, each recall is a float numpy array
|
|
corloc: numpy float array
|
|
mean_corloc: Mean CorLoc score for each class, float scalar
|
|
"""
|
|
if (self.num_gt_instances_per_class == 0).any():
|
|
logging.warn(
|
|
'The following classes have no ground truth examples: %s',
|
|
np.squeeze(np.argwhere(self.num_gt_instances_per_class == 0)) +
|
|
self.label_id_offset)
|
|
|
|
if self.use_weighted_mean_ap:
|
|
all_scores = np.array([], dtype=float)
|
|
all_tp_fp_labels = np.array([], dtype=bool)
|
|
for class_index in range(self.num_class):
|
|
if self.num_gt_instances_per_class[class_index] == 0:
|
|
continue
|
|
if not self.scores_per_class[class_index]:
|
|
scores = np.array([], dtype=float)
|
|
tp_fp_labels = np.array([], dtype=float)
|
|
else:
|
|
scores = np.concatenate(self.scores_per_class[class_index])
|
|
tp_fp_labels = np.concatenate(self.tp_fp_labels_per_class[class_index])
|
|
if self.use_weighted_mean_ap:
|
|
all_scores = np.append(all_scores, scores)
|
|
all_tp_fp_labels = np.append(all_tp_fp_labels, tp_fp_labels)
|
|
precision, recall = metrics.compute_precision_recall(
|
|
scores, tp_fp_labels, self.num_gt_instances_per_class[class_index])
|
|
recall_within_bound_indices = [
|
|
index for index, value in enumerate(recall) if
|
|
value >= self.recall_lower_bound and value <= self.recall_upper_bound
|
|
]
|
|
recall_within_bound = recall[recall_within_bound_indices]
|
|
precision_within_bound = precision[recall_within_bound_indices]
|
|
|
|
self.precisions_per_class[class_index] = precision_within_bound
|
|
self.recalls_per_class[class_index] = recall_within_bound
|
|
average_precision = metrics.compute_average_precision(
|
|
precision_within_bound, recall_within_bound)
|
|
self.average_precision_per_class[class_index] = average_precision
|
|
logging.info('average_precision: %f', average_precision)
|
|
|
|
self.corloc_per_class = metrics.compute_cor_loc(
|
|
self.num_gt_imgs_per_class,
|
|
self.num_images_correctly_detected_per_class)
|
|
|
|
if self.use_weighted_mean_ap:
|
|
num_gt_instances = np.sum(self.num_gt_instances_per_class)
|
|
precision, recall = metrics.compute_precision_recall(
|
|
all_scores, all_tp_fp_labels, num_gt_instances)
|
|
recall_within_bound_indices = [
|
|
index for index, value in enumerate(recall) if
|
|
value >= self.recall_lower_bound and value <= self.recall_upper_bound
|
|
]
|
|
recall_within_bound = recall[recall_within_bound_indices]
|
|
precision_within_bound = precision[recall_within_bound_indices]
|
|
mean_ap = metrics.compute_average_precision(precision_within_bound,
|
|
recall_within_bound)
|
|
else:
|
|
mean_ap = np.nanmean(self.average_precision_per_class)
|
|
mean_corloc = np.nanmean(self.corloc_per_class)
|
|
return ObjectDetectionEvalMetrics(
|
|
self.average_precision_per_class, mean_ap, self.precisions_per_class,
|
|
self.recalls_per_class, self.corloc_per_class, mean_corloc)
|