|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""A module for helper tensorflow ops."""
|
|
import collections
|
|
import math
|
|
import six
|
|
|
|
import tensorflow as tf
|
|
|
|
from object_detection.core import standard_fields as fields
|
|
from object_detection.utils import shape_utils
|
|
from object_detection.utils import spatial_transform_ops as spatial_ops
|
|
from object_detection.utils import static_shape
|
|
|
|
|
|
matmul_crop_and_resize = spatial_ops.matmul_crop_and_resize
|
|
multilevel_roi_align = spatial_ops.multilevel_roi_align
|
|
native_crop_and_resize = spatial_ops.native_crop_and_resize
|
|
|
|
|
|
def expanded_shape(orig_shape, start_dim, num_dims):
|
|
"""Inserts multiple ones into a shape vector.
|
|
|
|
Inserts an all-1 vector of length num_dims at position start_dim into a shape.
|
|
Can be combined with tf.reshape to generalize tf.expand_dims.
|
|
|
|
Args:
|
|
orig_shape: the shape into which the all-1 vector is added (int32 vector)
|
|
start_dim: insertion position (int scalar)
|
|
num_dims: length of the inserted all-1 vector (int scalar)
|
|
Returns:
|
|
An int32 vector of length tf.size(orig_shape) + num_dims.
|
|
"""
|
|
with tf.name_scope('ExpandedShape'):
|
|
start_dim = tf.expand_dims(start_dim, 0) # scalar to rank-1
|
|
before = tf.slice(orig_shape, [0], start_dim)
|
|
add_shape = tf.ones(tf.reshape(num_dims, [1]), dtype=tf.int32)
|
|
after = tf.slice(orig_shape, start_dim, [-1])
|
|
new_shape = tf.concat([before, add_shape, after], 0)
|
|
return new_shape
|
|
|
|
|
|
def normalized_to_image_coordinates(normalized_boxes, image_shape,
|
|
parallel_iterations=32):
|
|
"""Converts a batch of boxes from normal to image coordinates.
|
|
|
|
Args:
|
|
normalized_boxes: a tensor of shape [None, num_boxes, 4] in
|
|
normalized coordinates. The dtype of this tensor must support tf.mul.
|
|
image_shape: a tensor of shape [4] containing the image shape, with same
|
|
dtype as `normalized_boxes`.
|
|
parallel_iterations: parallelism for the map_fn op.
|
|
|
|
Returns:
|
|
absolute_boxes: a tensor of shape [None, num_boxes, 4] containing
|
|
the boxes in image coordinates, with same
|
|
dtype as `normalized_boxes`.
|
|
"""
|
|
x_scale = tf.cast(image_shape[2], normalized_boxes.dtype)
|
|
y_scale = tf.cast(image_shape[1], normalized_boxes.dtype)
|
|
def _to_absolute_coordinates(normalized_boxes):
|
|
y_min, x_min, y_max, x_max = tf.split(
|
|
value=normalized_boxes, num_or_size_splits=4, axis=1)
|
|
y_min = y_scale * y_min
|
|
y_max = y_scale * y_max
|
|
x_min = x_scale * x_min
|
|
x_max = x_scale * x_max
|
|
scaled_boxes = tf.concat([y_min, x_min, y_max, x_max], 1)
|
|
return scaled_boxes
|
|
|
|
absolute_boxes = shape_utils.static_or_dynamic_map_fn(
|
|
_to_absolute_coordinates,
|
|
elems=(normalized_boxes),
|
|
dtype=normalized_boxes.dtype,
|
|
parallel_iterations=parallel_iterations,
|
|
back_prop=True)
|
|
return absolute_boxes
|
|
|
|
|
|
def meshgrid(x, y):
|
|
"""Tiles the contents of x and y into a pair of grids.
|
|
|
|
Multidimensional analog of numpy.meshgrid, giving the same behavior if x and y
|
|
are vectors. Generally, this will give:
|
|
|
|
xgrid(i1, ..., i_m, j_1, ..., j_n) = x(j_1, ..., j_n)
|
|
ygrid(i1, ..., i_m, j_1, ..., j_n) = y(i_1, ..., i_m)
|
|
|
|
Keep in mind that the order of the arguments and outputs is reverse relative
|
|
to the order of the indices they go into, done for compatibility with numpy.
|
|
The output tensors have the same shapes. Specifically:
|
|
|
|
xgrid.get_shape() = y.get_shape().concatenate(x.get_shape())
|
|
ygrid.get_shape() = y.get_shape().concatenate(x.get_shape())
|
|
|
|
Args:
|
|
x: A tensor of arbitrary shape and rank. xgrid will contain these values
|
|
varying in its last dimensions.
|
|
y: A tensor of arbitrary shape and rank. ygrid will contain these values
|
|
varying in its first dimensions.
|
|
Returns:
|
|
A tuple of tensors (xgrid, ygrid).
|
|
"""
|
|
with tf.name_scope('Meshgrid'):
|
|
x = tf.convert_to_tensor(x)
|
|
y = tf.convert_to_tensor(y)
|
|
x_exp_shape = expanded_shape(tf.shape(x), 0, tf.rank(y))
|
|
y_exp_shape = expanded_shape(tf.shape(y), tf.rank(y), tf.rank(x))
|
|
|
|
xgrid = tf.tile(tf.reshape(x, x_exp_shape), y_exp_shape)
|
|
ygrid = tf.tile(tf.reshape(y, y_exp_shape), x_exp_shape)
|
|
new_shape = y.get_shape().concatenate(x.get_shape())
|
|
xgrid.set_shape(new_shape)
|
|
ygrid.set_shape(new_shape)
|
|
|
|
return xgrid, ygrid
|
|
|
|
|
|
def fixed_padding(inputs, kernel_size, rate=1):
|
|
"""Pads the input along the spatial dimensions independently of input size.
|
|
|
|
Args:
|
|
inputs: A tensor of size [batch, height_in, width_in, channels].
|
|
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
|
|
Should be a positive integer.
|
|
rate: An integer, rate for atrous convolution.
|
|
|
|
Returns:
|
|
output: A tensor of size [batch, height_out, width_out, channels] with the
|
|
input, either intact (if kernel_size == 1) or padded (if kernel_size > 1).
|
|
"""
|
|
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
|
|
pad_total = kernel_size_effective - 1
|
|
pad_beg = pad_total // 2
|
|
pad_end = pad_total - pad_beg
|
|
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
|
|
[pad_beg, pad_end], [0, 0]])
|
|
return padded_inputs
|
|
|
|
|
|
def pad_to_multiple(tensor, multiple):
|
|
"""Returns the tensor zero padded to the specified multiple.
|
|
|
|
Appends 0s to the end of the first and second dimension (height and width) of
|
|
the tensor until both dimensions are a multiple of the input argument
|
|
'multiple'. E.g. given an input tensor of shape [1, 3, 5, 1] and an input
|
|
multiple of 4, PadToMultiple will append 0s so that the resulting tensor will
|
|
be of shape [1, 4, 8, 1].
|
|
|
|
Args:
|
|
tensor: rank 4 float32 tensor, where
|
|
tensor -> [batch_size, height, width, channels].
|
|
multiple: the multiple to pad to.
|
|
|
|
Returns:
|
|
padded_tensor: the tensor zero padded to the specified multiple.
|
|
"""
|
|
if multiple == 1:
|
|
return tensor
|
|
|
|
tensor_shape = tensor.get_shape()
|
|
batch_size = static_shape.get_batch_size(tensor_shape)
|
|
tensor_height = static_shape.get_height(tensor_shape)
|
|
tensor_width = static_shape.get_width(tensor_shape)
|
|
tensor_depth = static_shape.get_depth(tensor_shape)
|
|
|
|
if batch_size is None:
|
|
batch_size = tf.shape(tensor)[0]
|
|
|
|
if tensor_height is None:
|
|
tensor_height = tf.shape(tensor)[1]
|
|
padded_tensor_height = tf.cast(
|
|
tf.ceil(
|
|
tf.cast(tensor_height, dtype=tf.float32) /
|
|
tf.cast(multiple, dtype=tf.float32)),
|
|
dtype=tf.int32) * multiple
|
|
else:
|
|
padded_tensor_height = int(
|
|
math.ceil(float(tensor_height) / multiple) * multiple)
|
|
|
|
if tensor_width is None:
|
|
tensor_width = tf.shape(tensor)[2]
|
|
padded_tensor_width = tf.cast(
|
|
tf.ceil(
|
|
tf.cast(tensor_width, dtype=tf.float32) /
|
|
tf.cast(multiple, dtype=tf.float32)),
|
|
dtype=tf.int32) * multiple
|
|
else:
|
|
padded_tensor_width = int(
|
|
math.ceil(float(tensor_width) / multiple) * multiple)
|
|
|
|
if tensor_depth is None:
|
|
tensor_depth = tf.shape(tensor)[3]
|
|
|
|
# Use tf.concat instead of tf.pad to preserve static shape
|
|
if padded_tensor_height != tensor_height:
|
|
height_pad = tf.zeros([
|
|
batch_size, padded_tensor_height - tensor_height, tensor_width,
|
|
tensor_depth
|
|
])
|
|
tensor = tf.concat([tensor, height_pad], 1)
|
|
if padded_tensor_width != tensor_width:
|
|
width_pad = tf.zeros([
|
|
batch_size, padded_tensor_height, padded_tensor_width - tensor_width,
|
|
tensor_depth
|
|
])
|
|
tensor = tf.concat([tensor, width_pad], 2)
|
|
|
|
return tensor
|
|
|
|
|
|
def padded_one_hot_encoding(indices, depth, left_pad):
|
|
"""Returns a zero padded one-hot tensor.
|
|
|
|
This function converts a sparse representation of indices (e.g., [4]) to a
|
|
zero padded one-hot representation (e.g., [0, 0, 0, 0, 1] with depth = 4 and
|
|
left_pad = 1). If `indices` is empty, the result will simply be a tensor of
|
|
shape (0, depth + left_pad). If depth = 0, then this function just returns
|
|
`None`.
|
|
|
|
Args:
|
|
indices: an integer tensor of shape [num_indices].
|
|
depth: depth for the one-hot tensor (integer).
|
|
left_pad: number of zeros to left pad the one-hot tensor with (integer).
|
|
|
|
Returns:
|
|
padded_onehot: a tensor with shape (num_indices, depth + left_pad). Returns
|
|
`None` if the depth is zero.
|
|
|
|
Raises:
|
|
ValueError: if `indices` does not have rank 1 or if `left_pad` or `depth are
|
|
either negative or non-integers.
|
|
|
|
TODO(rathodv): add runtime checks for depth and indices.
|
|
"""
|
|
if depth < 0 or not isinstance(depth, six.integer_types):
|
|
raise ValueError('`depth` must be a non-negative integer.')
|
|
if left_pad < 0 or not isinstance(left_pad, six.integer_types):
|
|
raise ValueError('`left_pad` must be a non-negative integer.')
|
|
if depth == 0:
|
|
return None
|
|
|
|
rank = len(indices.get_shape().as_list())
|
|
if rank != 1:
|
|
raise ValueError('`indices` must have rank 1, but has rank=%s' % rank)
|
|
|
|
def one_hot_and_pad():
|
|
one_hot = tf.cast(tf.one_hot(tf.cast(indices, tf.int64), depth,
|
|
on_value=1, off_value=0), tf.float32)
|
|
return tf.pad(one_hot, [[0, 0], [left_pad, 0]], mode='CONSTANT')
|
|
result = tf.cond(tf.greater(tf.size(indices), 0), one_hot_and_pad,
|
|
lambda: tf.zeros((depth + left_pad, 0)))
|
|
return tf.reshape(result, [-1, depth + left_pad])
|
|
|
|
|
|
def dense_to_sparse_boxes(dense_locations, dense_num_boxes, num_classes):
|
|
"""Converts bounding boxes from dense to sparse form.
|
|
|
|
Args:
|
|
dense_locations: a [max_num_boxes, 4] tensor in which only the first k rows
|
|
are valid bounding box location coordinates, where k is the sum of
|
|
elements in dense_num_boxes.
|
|
dense_num_boxes: a [max_num_classes] tensor indicating the counts of
|
|
various bounding box classes e.g. [1, 0, 0, 2] means that the first
|
|
bounding box is of class 0 and the second and third bounding boxes are
|
|
of class 3. The sum of elements in this tensor is the number of valid
|
|
bounding boxes.
|
|
num_classes: number of classes
|
|
|
|
Returns:
|
|
box_locations: a [num_boxes, 4] tensor containing only valid bounding
|
|
boxes (i.e. the first num_boxes rows of dense_locations)
|
|
box_classes: a [num_boxes] tensor containing the classes of each bounding
|
|
box (e.g. dense_num_boxes = [1, 0, 0, 2] => box_classes = [0, 3, 3]
|
|
"""
|
|
|
|
num_valid_boxes = tf.reduce_sum(dense_num_boxes)
|
|
box_locations = tf.slice(dense_locations,
|
|
tf.constant([0, 0]), tf.stack([num_valid_boxes, 4]))
|
|
tiled_classes = [tf.tile([i], tf.expand_dims(dense_num_boxes[i], 0))
|
|
for i in range(num_classes)]
|
|
box_classes = tf.concat(tiled_classes, 0)
|
|
box_locations.set_shape([None, 4])
|
|
return box_locations, box_classes
|
|
|
|
|
|
def indices_to_dense_vector(indices,
|
|
size,
|
|
indices_value=1.,
|
|
default_value=0,
|
|
dtype=tf.float32):
|
|
"""Creates dense vector with indices set to specific value and rest to zeros.
|
|
|
|
This function exists because it is unclear if it is safe to use
|
|
tf.sparse_to_dense(indices, [size], 1, validate_indices=False)
|
|
with indices which are not ordered.
|
|
This function accepts a dynamic size (e.g. tf.shape(tensor)[0])
|
|
|
|
Args:
|
|
indices: 1d Tensor with integer indices which are to be set to
|
|
indices_values.
|
|
size: scalar with size (integer) of output Tensor.
|
|
indices_value: values of elements specified by indices in the output vector
|
|
default_value: values of other elements in the output vector.
|
|
dtype: data type.
|
|
|
|
Returns:
|
|
dense 1D Tensor of shape [size] with indices set to indices_values and the
|
|
rest set to default_value.
|
|
"""
|
|
size = tf.cast(size, dtype=tf.int32)
|
|
zeros = tf.ones([size], dtype=dtype) * default_value
|
|
values = tf.ones_like(indices, dtype=dtype) * indices_value
|
|
|
|
return tf.dynamic_stitch([tf.range(size), tf.cast(indices, dtype=tf.int32)],
|
|
[zeros, values])
|
|
|
|
|
|
def reduce_sum_trailing_dimensions(tensor, ndims):
|
|
"""Computes sum across all dimensions following first `ndims` dimensions."""
|
|
return tf.reduce_sum(tensor, axis=tuple(range(ndims, tensor.shape.ndims)))
|
|
|
|
|
|
def retain_groundtruth(tensor_dict, valid_indices):
|
|
"""Retains groundtruth by valid indices.
|
|
|
|
Args:
|
|
tensor_dict: a dictionary of following groundtruth tensors -
|
|
fields.InputDataFields.groundtruth_boxes
|
|
fields.InputDataFields.groundtruth_classes
|
|
fields.InputDataFields.groundtruth_confidences
|
|
fields.InputDataFields.groundtruth_keypoints
|
|
fields.InputDataFields.groundtruth_instance_masks
|
|
fields.InputDataFields.groundtruth_is_crowd
|
|
fields.InputDataFields.groundtruth_area
|
|
fields.InputDataFields.groundtruth_label_types
|
|
fields.InputDataFields.groundtruth_difficult
|
|
valid_indices: a tensor with valid indices for the box-level groundtruth.
|
|
|
|
Returns:
|
|
a dictionary of tensors containing only the groundtruth for valid_indices.
|
|
|
|
Raises:
|
|
ValueError: If the shape of valid_indices is invalid.
|
|
ValueError: field fields.InputDataFields.groundtruth_boxes is
|
|
not present in tensor_dict.
|
|
"""
|
|
input_shape = valid_indices.get_shape().as_list()
|
|
if not (len(input_shape) == 1 or
|
|
(len(input_shape) == 2 and input_shape[1] == 1)):
|
|
raise ValueError('The shape of valid_indices is invalid.')
|
|
valid_indices = tf.reshape(valid_indices, [-1])
|
|
valid_dict = {}
|
|
if fields.InputDataFields.groundtruth_boxes in tensor_dict:
|
|
# Prevents reshape failure when num_boxes is 0.
|
|
num_boxes = tf.maximum(tf.shape(
|
|
tensor_dict[fields.InputDataFields.groundtruth_boxes])[0], 1)
|
|
for key in tensor_dict:
|
|
if key in [fields.InputDataFields.groundtruth_boxes,
|
|
fields.InputDataFields.groundtruth_classes,
|
|
fields.InputDataFields.groundtruth_confidences,
|
|
fields.InputDataFields.groundtruth_keypoints,
|
|
fields.InputDataFields.groundtruth_keypoint_visibilities,
|
|
fields.InputDataFields.groundtruth_instance_masks]:
|
|
valid_dict[key] = tf.gather(tensor_dict[key], valid_indices)
|
|
# Input decoder returns empty tensor when these fields are not provided.
|
|
# Needs to reshape into [num_boxes, -1] for tf.gather() to work.
|
|
elif key in [fields.InputDataFields.groundtruth_is_crowd,
|
|
fields.InputDataFields.groundtruth_area,
|
|
fields.InputDataFields.groundtruth_difficult,
|
|
fields.InputDataFields.groundtruth_label_types]:
|
|
valid_dict[key] = tf.reshape(
|
|
tf.gather(tf.reshape(tensor_dict[key], [num_boxes, -1]),
|
|
valid_indices), [-1])
|
|
# Fields that are not associated with boxes.
|
|
else:
|
|
valid_dict[key] = tensor_dict[key]
|
|
else:
|
|
raise ValueError('%s not present in input tensor dict.' % (
|
|
fields.InputDataFields.groundtruth_boxes))
|
|
return valid_dict
|
|
|
|
|
|
def retain_groundtruth_with_positive_classes(tensor_dict):
|
|
"""Retains only groundtruth with positive class ids.
|
|
|
|
Args:
|
|
tensor_dict: a dictionary of following groundtruth tensors -
|
|
fields.InputDataFields.groundtruth_boxes
|
|
fields.InputDataFields.groundtruth_classes
|
|
fields.InputDataFields.groundtruth_confidences
|
|
fields.InputDataFields.groundtruth_keypoints
|
|
fields.InputDataFields.groundtruth_instance_masks
|
|
fields.InputDataFields.groundtruth_is_crowd
|
|
fields.InputDataFields.groundtruth_area
|
|
fields.InputDataFields.groundtruth_label_types
|
|
fields.InputDataFields.groundtruth_difficult
|
|
|
|
Returns:
|
|
a dictionary of tensors containing only the groundtruth with positive
|
|
classes.
|
|
|
|
Raises:
|
|
ValueError: If groundtruth_classes tensor is not in tensor_dict.
|
|
"""
|
|
if fields.InputDataFields.groundtruth_classes not in tensor_dict:
|
|
raise ValueError('`groundtruth classes` not in tensor_dict.')
|
|
keep_indices = tf.where(tf.greater(
|
|
tensor_dict[fields.InputDataFields.groundtruth_classes], 0))
|
|
return retain_groundtruth(tensor_dict, keep_indices)
|
|
|
|
|
|
def replace_nan_groundtruth_label_scores_with_ones(label_scores):
|
|
"""Replaces nan label scores with 1.0.
|
|
|
|
Args:
|
|
label_scores: a tensor containing object annoation label scores.
|
|
|
|
Returns:
|
|
a tensor where NaN label scores have been replaced by ones.
|
|
"""
|
|
return tf.where(
|
|
tf.is_nan(label_scores), tf.ones(tf.shape(label_scores)), label_scores)
|
|
|
|
|
|
def filter_groundtruth_with_crowd_boxes(tensor_dict):
|
|
"""Filters out groundtruth with boxes corresponding to crowd.
|
|
|
|
Args:
|
|
tensor_dict: a dictionary of following groundtruth tensors -
|
|
fields.InputDataFields.groundtruth_boxes
|
|
fields.InputDataFields.groundtruth_classes
|
|
fields.InputDataFields.groundtruth_confidences
|
|
fields.InputDataFields.groundtruth_keypoints
|
|
fields.InputDataFields.groundtruth_instance_masks
|
|
fields.InputDataFields.groundtruth_is_crowd
|
|
fields.InputDataFields.groundtruth_area
|
|
fields.InputDataFields.groundtruth_label_types
|
|
|
|
Returns:
|
|
a dictionary of tensors containing only the groundtruth that have bounding
|
|
boxes.
|
|
"""
|
|
if fields.InputDataFields.groundtruth_is_crowd in tensor_dict:
|
|
is_crowd = tensor_dict[fields.InputDataFields.groundtruth_is_crowd]
|
|
is_not_crowd = tf.logical_not(is_crowd)
|
|
is_not_crowd_indices = tf.where(is_not_crowd)
|
|
tensor_dict = retain_groundtruth(tensor_dict, is_not_crowd_indices)
|
|
return tensor_dict
|
|
|
|
|
|
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
|
|
"""Filters out groundtruth with no bounding boxes.
|
|
|
|
Args:
|
|
tensor_dict: a dictionary of following groundtruth tensors -
|
|
fields.InputDataFields.groundtruth_boxes
|
|
fields.InputDataFields.groundtruth_classes
|
|
fields.InputDataFields.groundtruth_confidences
|
|
fields.InputDataFields.groundtruth_keypoints
|
|
fields.InputDataFields.groundtruth_instance_masks
|
|
fields.InputDataFields.groundtruth_is_crowd
|
|
fields.InputDataFields.groundtruth_area
|
|
fields.InputDataFields.groundtruth_label_types
|
|
|
|
Returns:
|
|
a dictionary of tensors containing only the groundtruth that have bounding
|
|
boxes.
|
|
"""
|
|
groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
|
|
nan_indicator_vector = tf.greater(tf.reduce_sum(tf.cast(
|
|
tf.is_nan(groundtruth_boxes), dtype=tf.int32), reduction_indices=[1]), 0)
|
|
valid_indicator_vector = tf.logical_not(nan_indicator_vector)
|
|
valid_indices = tf.where(valid_indicator_vector)
|
|
|
|
return retain_groundtruth(tensor_dict, valid_indices)
|
|
|
|
|
|
def filter_unrecognized_classes(tensor_dict):
|
|
"""Filters out class labels that are not unrecognized by the labelmap.
|
|
|
|
Decoder would parse unrecognized classes (not included in the labelmap) to
|
|
a label of value -1. Such targets are unecessary for training, and causes
|
|
issue for evaluation, due to labeling mapping logic. This function filters
|
|
those labels out for both training and evaluation.
|
|
|
|
Args:
|
|
tensor_dict: dictionary containing input tensors keyed by
|
|
fields.InputDataFields.
|
|
|
|
Returns:
|
|
A dictionary keyed by fields.InputDataFields containing the tensors
|
|
obtained after applying the filtering.
|
|
|
|
Raises:
|
|
ValueError: If groundtruth_classes tensor is not in tensor_dict.
|
|
"""
|
|
if fields.InputDataFields.groundtruth_classes not in tensor_dict:
|
|
raise ValueError('`groundtruth classes` not in tensor_dict.')
|
|
# Refer to tf_example_decoder for how unrecognized labels are handled.
|
|
unrecognized_label = -1
|
|
recognized_indices = tf.where(
|
|
tf.greater(tensor_dict[fields.InputDataFields.groundtruth_classes],
|
|
unrecognized_label))
|
|
|
|
return retain_groundtruth(tensor_dict, recognized_indices)
|
|
|
|
|
|
def normalize_to_target(inputs,
|
|
target_norm_value,
|
|
dim,
|
|
epsilon=1e-7,
|
|
trainable=True,
|
|
scope='NormalizeToTarget',
|
|
summarize=True):
|
|
"""L2 normalizes the inputs across the specified dimension to a target norm.
|
|
|
|
This op implements the L2 Normalization layer introduced in
|
|
Liu, Wei, et al. "SSD: Single Shot MultiBox Detector."
|
|
and Liu, Wei, Andrew Rabinovich, and Alexander C. Berg.
|
|
"Parsenet: Looking wider to see better." and is useful for bringing
|
|
activations from multiple layers in a convnet to a standard scale.
|
|
|
|
Note that the rank of `inputs` must be known and the dimension to which
|
|
normalization is to be applied should be statically defined.
|
|
|
|
TODO(jonathanhuang): Add option to scale by L2 norm of the entire input.
|
|
|
|
Args:
|
|
inputs: A `Tensor` of arbitrary size.
|
|
target_norm_value: A float value that specifies an initial target norm or
|
|
a list of floats (whose length must be equal to the depth along the
|
|
dimension to be normalized) specifying a per-dimension multiplier
|
|
after normalization.
|
|
dim: The dimension along which the input is normalized.
|
|
epsilon: A small value to add to the inputs to avoid dividing by zero.
|
|
trainable: Whether the norm is trainable or not
|
|
scope: Optional scope for variable_scope.
|
|
summarize: Whether or not to add a tensorflow summary for the op.
|
|
|
|
Returns:
|
|
The input tensor normalized to the specified target norm.
|
|
|
|
Raises:
|
|
ValueError: If dim is smaller than the number of dimensions in 'inputs'.
|
|
ValueError: If target_norm_value is not a float or a list of floats with
|
|
length equal to the depth along the dimension to be normalized.
|
|
"""
|
|
with tf.variable_scope(scope, 'NormalizeToTarget', [inputs]):
|
|
if not inputs.get_shape():
|
|
raise ValueError('The input rank must be known.')
|
|
input_shape = inputs.get_shape().as_list()
|
|
input_rank = len(input_shape)
|
|
if dim < 0 or dim >= input_rank:
|
|
raise ValueError(
|
|
'dim must be non-negative but smaller than the input rank.')
|
|
if not input_shape[dim]:
|
|
raise ValueError('input shape should be statically defined along '
|
|
'the specified dimension.')
|
|
depth = input_shape[dim]
|
|
if not (isinstance(target_norm_value, float) or
|
|
(isinstance(target_norm_value, list) and
|
|
len(target_norm_value) == depth) and
|
|
all([isinstance(val, float) for val in target_norm_value])):
|
|
raise ValueError('target_norm_value must be a float or a list of floats '
|
|
'with length equal to the depth along the dimension to '
|
|
'be normalized.')
|
|
if isinstance(target_norm_value, float):
|
|
initial_norm = depth * [target_norm_value]
|
|
else:
|
|
initial_norm = target_norm_value
|
|
target_norm = tf.contrib.framework.model_variable(
|
|
name='weights', dtype=tf.float32,
|
|
initializer=tf.constant(initial_norm, dtype=tf.float32),
|
|
trainable=trainable)
|
|
if summarize:
|
|
mean = tf.reduce_mean(target_norm)
|
|
tf.summary.scalar(tf.get_variable_scope().name, mean)
|
|
lengths = epsilon + tf.sqrt(tf.reduce_sum(tf.square(inputs), dim, True))
|
|
mult_shape = input_rank*[1]
|
|
mult_shape[dim] = depth
|
|
return tf.reshape(target_norm, mult_shape) * tf.truediv(inputs, lengths)
|
|
|
|
|
|
def batch_position_sensitive_crop_regions(images,
|
|
boxes,
|
|
crop_size,
|
|
num_spatial_bins,
|
|
global_pool,
|
|
parallel_iterations=64):
|
|
"""Position sensitive crop with batches of images and boxes.
|
|
|
|
This op is exactly like `position_sensitive_crop_regions` below but operates
|
|
on batches of images and boxes. See `position_sensitive_crop_regions` function
|
|
below for the operation applied per batch element.
|
|
|
|
Args:
|
|
images: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
|
|
`int16`, `int32`, `int64`, `half`, `float32`, `float64`.
|
|
A 4-D tensor of shape `[batch, image_height, image_width, depth]`.
|
|
Both `image_height` and `image_width` need to be positive.
|
|
boxes: A `Tensor` of type `float32`.
|
|
A 3-D tensor of shape `[batch, num_boxes, 4]`. Each box is specified in
|
|
normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value
|
|
of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so
|
|
as the `[0, 1]` interval of normalized image height is mapped to
|
|
`[0, image_height - 1] in image height coordinates. We do allow y1 > y2,
|
|
in which case the sampled crop is an up-down flipped version of the
|
|
original image. The width dimension is treated similarly.
|
|
crop_size: See `position_sensitive_crop_regions` below.
|
|
num_spatial_bins: See `position_sensitive_crop_regions` below.
|
|
global_pool: See `position_sensitive_crop_regions` below.
|
|
parallel_iterations: Number of batch items to process in parallel.
|
|
|
|
Returns:
|
|
"""
|
|
def _position_sensitive_crop_fn(inputs):
|
|
images, boxes = inputs
|
|
return position_sensitive_crop_regions(
|
|
images,
|
|
boxes,
|
|
crop_size=crop_size,
|
|
num_spatial_bins=num_spatial_bins,
|
|
global_pool=global_pool)
|
|
|
|
return shape_utils.static_or_dynamic_map_fn(
|
|
_position_sensitive_crop_fn,
|
|
elems=[images, boxes],
|
|
dtype=tf.float32,
|
|
parallel_iterations=parallel_iterations)
|
|
|
|
|
|
def position_sensitive_crop_regions(image,
|
|
boxes,
|
|
crop_size,
|
|
num_spatial_bins,
|
|
global_pool):
|
|
"""Position-sensitive crop and pool rectangular regions from a feature grid.
|
|
|
|
The output crops are split into `spatial_bins_y` vertical bins
|
|
and `spatial_bins_x` horizontal bins. For each intersection of a vertical
|
|
and a horizontal bin the output values are gathered by performing
|
|
`tf.image.crop_and_resize` (bilinear resampling) on a a separate subset of
|
|
channels of the image. This reduces `depth` by a factor of
|
|
`(spatial_bins_y * spatial_bins_x)`.
|
|
|
|
When global_pool is True, this function implements a differentiable version
|
|
of position-sensitive RoI pooling used in
|
|
[R-FCN detection system](https://arxiv.org/abs/1605.06409).
|
|
|
|
When global_pool is False, this function implements a differentiable version
|
|
of position-sensitive assembling operation used in
|
|
[instance FCN](https://arxiv.org/abs/1603.08678).
|
|
|
|
Args:
|
|
image: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
|
|
`int16`, `int32`, `int64`, `half`, `float32`, `float64`.
|
|
A 3-D tensor of shape `[image_height, image_width, depth]`.
|
|
Both `image_height` and `image_width` need to be positive.
|
|
boxes: A `Tensor` of type `float32`.
|
|
A 2-D tensor of shape `[num_boxes, 4]`. Each box is specified in
|
|
normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value
|
|
of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so
|
|
as the `[0, 1]` interval of normalized image height is mapped to
|
|
`[0, image_height - 1] in image height coordinates. We do allow y1 > y2,
|
|
in which case the sampled crop is an up-down flipped version of the
|
|
original image. The width dimension is treated similarly.
|
|
crop_size: A list of two integers `[crop_height, crop_width]`. All
|
|
cropped image patches are resized to this size. The aspect ratio of the
|
|
image content is not preserved. Both `crop_height` and `crop_width` need
|
|
to be positive.
|
|
num_spatial_bins: A list of two integers `[spatial_bins_y, spatial_bins_x]`.
|
|
Represents the number of position-sensitive bins in y and x directions.
|
|
Both values should be >= 1. `crop_height` should be divisible by
|
|
`spatial_bins_y`, and similarly for width.
|
|
The number of image channels should be divisible by
|
|
(spatial_bins_y * spatial_bins_x).
|
|
Suggested value from R-FCN paper: [3, 3].
|
|
global_pool: A boolean variable.
|
|
If True, we perform average global pooling on the features assembled from
|
|
the position-sensitive score maps.
|
|
If False, we keep the position-pooled features without global pooling
|
|
over the spatial coordinates.
|
|
Note that using global_pool=True is equivalent to but more efficient than
|
|
running the function with global_pool=False and then performing global
|
|
average pooling.
|
|
|
|
Returns:
|
|
position_sensitive_features: A 4-D tensor of shape
|
|
`[num_boxes, K, K, crop_channels]`,
|
|
where `crop_channels = depth / (spatial_bins_y * spatial_bins_x)`,
|
|
where K = 1 when global_pool is True (Average-pooled cropped regions),
|
|
and K = crop_size when global_pool is False.
|
|
Raises:
|
|
ValueError: Raised in four situations:
|
|
`num_spatial_bins` is not >= 1;
|
|
`num_spatial_bins` does not divide `crop_size`;
|
|
`(spatial_bins_y*spatial_bins_x)` does not divide `depth`;
|
|
`bin_crop_size` is not square when global_pool=False due to the
|
|
constraint in function space_to_depth.
|
|
"""
|
|
total_bins = 1
|
|
bin_crop_size = []
|
|
|
|
for (num_bins, crop_dim) in zip(num_spatial_bins, crop_size):
|
|
if num_bins < 1:
|
|
raise ValueError('num_spatial_bins should be >= 1')
|
|
|
|
if crop_dim % num_bins != 0:
|
|
raise ValueError('crop_size should be divisible by num_spatial_bins')
|
|
|
|
total_bins *= num_bins
|
|
bin_crop_size.append(crop_dim // num_bins)
|
|
|
|
if not global_pool and bin_crop_size[0] != bin_crop_size[1]:
|
|
raise ValueError('Only support square bin crop size for now.')
|
|
|
|
ymin, xmin, ymax, xmax = tf.unstack(boxes, axis=1)
|
|
spatial_bins_y, spatial_bins_x = num_spatial_bins
|
|
|
|
# Split each box into spatial_bins_y * spatial_bins_x bins.
|
|
position_sensitive_boxes = []
|
|
for bin_y in range(spatial_bins_y):
|
|
step_y = (ymax - ymin) / spatial_bins_y
|
|
for bin_x in range(spatial_bins_x):
|
|
step_x = (xmax - xmin) / spatial_bins_x
|
|
box_coordinates = [ymin + bin_y * step_y,
|
|
xmin + bin_x * step_x,
|
|
ymin + (bin_y + 1) * step_y,
|
|
xmin + (bin_x + 1) * step_x,
|
|
]
|
|
position_sensitive_boxes.append(tf.stack(box_coordinates, axis=1))
|
|
|
|
image_splits = tf.split(value=image, num_or_size_splits=total_bins, axis=2)
|
|
|
|
image_crops = []
|
|
for (split, box) in zip(image_splits, position_sensitive_boxes):
|
|
if split.shape.is_fully_defined() and box.shape.is_fully_defined():
|
|
crop = tf.squeeze(
|
|
matmul_crop_and_resize(
|
|
tf.expand_dims(split, axis=0), tf.expand_dims(box, axis=0),
|
|
bin_crop_size),
|
|
axis=0)
|
|
else:
|
|
crop = tf.image.crop_and_resize(
|
|
tf.expand_dims(split, 0), box,
|
|
tf.zeros(tf.shape(boxes)[0], dtype=tf.int32), bin_crop_size)
|
|
image_crops.append(crop)
|
|
|
|
if global_pool:
|
|
# Average over all bins.
|
|
position_sensitive_features = tf.add_n(image_crops) / len(image_crops)
|
|
# Then average over spatial positions within the bins.
|
|
position_sensitive_features = tf.reduce_mean(
|
|
position_sensitive_features, [1, 2], keepdims=True)
|
|
else:
|
|
# Reorder height/width to depth channel.
|
|
block_size = bin_crop_size[0]
|
|
if block_size >= 2:
|
|
image_crops = [tf.space_to_depth(
|
|
crop, block_size=block_size) for crop in image_crops]
|
|
|
|
# Pack image_crops so that first dimension is for position-senstive boxes.
|
|
position_sensitive_features = tf.stack(image_crops, axis=0)
|
|
|
|
# Unroll the position-sensitive boxes to spatial positions.
|
|
position_sensitive_features = tf.squeeze(
|
|
tf.batch_to_space_nd(position_sensitive_features,
|
|
block_shape=[1] + num_spatial_bins,
|
|
crops=tf.zeros((3, 2), dtype=tf.int32)),
|
|
axis=[0])
|
|
|
|
# Reorder back the depth channel.
|
|
if block_size >= 2:
|
|
position_sensitive_features = tf.depth_to_space(
|
|
position_sensitive_features, block_size=block_size)
|
|
|
|
return position_sensitive_features
|
|
|
|
|
|
def reframe_box_masks_to_image_masks(box_masks, boxes, image_height,
|
|
image_width):
|
|
"""Transforms the box masks back to full image masks.
|
|
|
|
Embeds masks in bounding boxes of larger masks whose shapes correspond to
|
|
image shape.
|
|
|
|
Args:
|
|
box_masks: A tf.float32 tensor of size [num_masks, mask_height, mask_width].
|
|
boxes: A tf.float32 tensor of size [num_masks, 4] containing the box
|
|
corners. Row i contains [ymin, xmin, ymax, xmax] of the box
|
|
corresponding to mask i. Note that the box corners are in
|
|
normalized coordinates.
|
|
image_height: Image height. The output mask will have the same height as
|
|
the image height.
|
|
image_width: Image width. The output mask will have the same width as the
|
|
image width.
|
|
|
|
Returns:
|
|
A tf.float32 tensor of size [num_masks, image_height, image_width].
|
|
"""
|
|
# TODO(rathodv): Make this a public function.
|
|
def reframe_box_masks_to_image_masks_default():
|
|
"""The default function when there are more than 0 box masks."""
|
|
def transform_boxes_relative_to_boxes(boxes, reference_boxes):
|
|
boxes = tf.reshape(boxes, [-1, 2, 2])
|
|
min_corner = tf.expand_dims(reference_boxes[:, 0:2], 1)
|
|
max_corner = tf.expand_dims(reference_boxes[:, 2:4], 1)
|
|
transformed_boxes = (boxes - min_corner) / (max_corner - min_corner)
|
|
return tf.reshape(transformed_boxes, [-1, 4])
|
|
|
|
box_masks_expanded = tf.expand_dims(box_masks, axis=3)
|
|
num_boxes = tf.shape(box_masks_expanded)[0]
|
|
unit_boxes = tf.concat(
|
|
[tf.zeros([num_boxes, 2]), tf.ones([num_boxes, 2])], axis=1)
|
|
reverse_boxes = transform_boxes_relative_to_boxes(unit_boxes, boxes)
|
|
return tf.image.crop_and_resize(
|
|
image=box_masks_expanded,
|
|
boxes=reverse_boxes,
|
|
box_ind=tf.range(num_boxes),
|
|
crop_size=[image_height, image_width],
|
|
extrapolation_value=0.0)
|
|
image_masks = tf.cond(
|
|
tf.shape(box_masks)[0] > 0,
|
|
reframe_box_masks_to_image_masks_default,
|
|
lambda: tf.zeros([0, image_height, image_width, 1], dtype=tf.float32))
|
|
return tf.squeeze(image_masks, axis=3)
|
|
|
|
|
|
def merge_boxes_with_multiple_labels(boxes,
|
|
classes,
|
|
confidences,
|
|
num_classes,
|
|
quantization_bins=10000):
|
|
"""Merges boxes with same coordinates and returns K-hot encoded classes.
|
|
|
|
Args:
|
|
boxes: A tf.float32 tensor with shape [N, 4] holding N boxes. Only
|
|
normalized coordinates are allowed.
|
|
classes: A tf.int32 tensor with shape [N] holding class indices.
|
|
The class index starts at 0.
|
|
confidences: A tf.float32 tensor with shape [N] holding class confidences.
|
|
num_classes: total number of classes to use for K-hot encoding.
|
|
quantization_bins: the number of bins used to quantize the box coordinate.
|
|
|
|
Returns:
|
|
merged_boxes: A tf.float32 tensor with shape [N', 4] holding boxes,
|
|
where N' <= N.
|
|
class_encodings: A tf.int32 tensor with shape [N', num_classes] holding
|
|
K-hot encodings for the merged boxes.
|
|
confidence_encodings: A tf.float32 tensor with shape [N', num_classes]
|
|
holding encodings of confidences for the merged boxes.
|
|
merged_box_indices: A tf.int32 tensor with shape [N'] holding original
|
|
indices of the boxes.
|
|
"""
|
|
boxes_shape = tf.shape(boxes)
|
|
classes_shape = tf.shape(classes)
|
|
confidences_shape = tf.shape(confidences)
|
|
box_class_shape_assert = shape_utils.assert_shape_equal_along_first_dimension(
|
|
boxes_shape, classes_shape)
|
|
box_confidence_shape_assert = (
|
|
shape_utils.assert_shape_equal_along_first_dimension(
|
|
boxes_shape, confidences_shape))
|
|
box_dimension_assert = tf.assert_equal(boxes_shape[1], 4)
|
|
box_normalized_assert = shape_utils.assert_box_normalized(boxes)
|
|
|
|
with tf.control_dependencies(
|
|
[box_class_shape_assert, box_confidence_shape_assert,
|
|
box_dimension_assert, box_normalized_assert]):
|
|
quantized_boxes = tf.to_int64(boxes * (quantization_bins - 1))
|
|
ymin, xmin, ymax, xmax = tf.unstack(quantized_boxes, axis=1)
|
|
hashcodes = (
|
|
ymin +
|
|
xmin * quantization_bins +
|
|
ymax * quantization_bins * quantization_bins +
|
|
xmax * quantization_bins * quantization_bins * quantization_bins)
|
|
unique_hashcodes, unique_indices = tf.unique(hashcodes)
|
|
num_boxes = tf.shape(boxes)[0]
|
|
num_unique_boxes = tf.shape(unique_hashcodes)[0]
|
|
merged_box_indices = tf.unsorted_segment_min(
|
|
tf.range(num_boxes), unique_indices, num_unique_boxes)
|
|
merged_boxes = tf.gather(boxes, merged_box_indices)
|
|
unique_indices = tf.to_int64(unique_indices)
|
|
classes = tf.to_int64(classes)
|
|
|
|
def map_box_encodings(i):
|
|
"""Produces box K-hot and score encodings for each class index."""
|
|
box_mask = tf.equal(
|
|
unique_indices, i * tf.ones(num_boxes, dtype=tf.int64))
|
|
box_mask = tf.reshape(box_mask, [-1])
|
|
box_indices = tf.boolean_mask(classes, box_mask)
|
|
box_confidences = tf.boolean_mask(confidences, box_mask)
|
|
box_class_encodings = tf.sparse_to_dense(
|
|
box_indices, [num_classes], tf.constant(1, dtype=tf.int64),
|
|
validate_indices=False)
|
|
box_confidence_encodings = tf.sparse_to_dense(
|
|
box_indices, [num_classes], box_confidences, validate_indices=False)
|
|
return box_class_encodings, box_confidence_encodings
|
|
|
|
# Important to avoid int32 here since there is no GPU kernel for int32.
|
|
# int64 and float32 are fine.
|
|
class_encodings, confidence_encodings = tf.map_fn(
|
|
map_box_encodings,
|
|
tf.range(tf.to_int64(num_unique_boxes)),
|
|
back_prop=False,
|
|
dtype=(tf.int64, tf.float32))
|
|
|
|
merged_boxes = tf.reshape(merged_boxes, [-1, 4])
|
|
class_encodings = tf.cast(class_encodings, dtype=tf.int32)
|
|
class_encodings = tf.reshape(class_encodings, [-1, num_classes])
|
|
confidence_encodings = tf.reshape(confidence_encodings, [-1, num_classes])
|
|
merged_box_indices = tf.reshape(merged_box_indices, [-1])
|
|
return (merged_boxes, class_encodings, confidence_encodings,
|
|
merged_box_indices)
|
|
|
|
|
|
def nearest_neighbor_upsampling(input_tensor, scale=None, height_scale=None,
|
|
width_scale=None):
|
|
"""Nearest neighbor upsampling implementation.
|
|
|
|
Nearest neighbor upsampling function that maps input tensor with shape
|
|
[batch_size, height, width, channels] to [batch_size, height * scale
|
|
, width * scale, channels]. This implementation only uses reshape and
|
|
broadcasting to make it TPU compatible.
|
|
|
|
Args:
|
|
input_tensor: A float32 tensor of size [batch, height_in, width_in,
|
|
channels].
|
|
scale: An integer multiple to scale resolution of input data in both height
|
|
and width dimensions.
|
|
height_scale: An integer multiple to scale the height of input image. This
|
|
option when provided overrides `scale` option.
|
|
width_scale: An integer multiple to scale the width of input image. This
|
|
option when provided overrides `scale` option.
|
|
Returns:
|
|
data_up: A float32 tensor of size
|
|
[batch, height_in*scale, width_in*scale, channels].
|
|
|
|
Raises:
|
|
ValueError: If both scale and height_scale or if both scale and width_scale
|
|
are None.
|
|
"""
|
|
if not scale and (height_scale is None or width_scale is None):
|
|
raise ValueError('Provide either `scale` or `height_scale` and'
|
|
' `width_scale`.')
|
|
with tf.name_scope('nearest_neighbor_upsampling'):
|
|
h_scale = scale if height_scale is None else height_scale
|
|
w_scale = scale if width_scale is None else width_scale
|
|
(batch_size, height, width,
|
|
channels) = shape_utils.combined_static_and_dynamic_shape(input_tensor)
|
|
output_tensor = tf.reshape(
|
|
input_tensor, [batch_size, height, 1, width, 1, channels]) * tf.ones(
|
|
[1, 1, h_scale, 1, w_scale, 1], dtype=input_tensor.dtype)
|
|
return tf.reshape(output_tensor,
|
|
[batch_size, height * h_scale, width * w_scale, channels])
|
|
|
|
|
|
def matmul_gather_on_zeroth_axis(params, indices, scope=None):
|
|
"""Matrix multiplication based implementation of tf.gather on zeroth axis.
|
|
|
|
TODO(rathodv, jonathanhuang): enable sparse matmul option.
|
|
|
|
Args:
|
|
params: A float32 Tensor. The tensor from which to gather values.
|
|
Must be at least rank 1.
|
|
indices: A Tensor. Must be one of the following types: int32, int64.
|
|
Must be in range [0, params.shape[0])
|
|
scope: A name for the operation (optional).
|
|
|
|
Returns:
|
|
A Tensor. Has the same type as params. Values from params gathered
|
|
from indices given by indices, with shape indices.shape + params.shape[1:].
|
|
"""
|
|
with tf.name_scope(scope, 'MatMulGather'):
|
|
params_shape = shape_utils.combined_static_and_dynamic_shape(params)
|
|
indices_shape = shape_utils.combined_static_and_dynamic_shape(indices)
|
|
params2d = tf.reshape(params, [params_shape[0], -1])
|
|
indicator_matrix = tf.one_hot(indices, params_shape[0])
|
|
gathered_result_flattened = tf.matmul(indicator_matrix, params2d)
|
|
return tf.reshape(gathered_result_flattened,
|
|
tf.stack(indices_shape + params_shape[1:]))
|
|
|
|
|
|
def fpn_feature_levels(num_levels, unit_scale_index, image_ratio, boxes):
|
|
"""Returns fpn feature level for each box based on its area.
|
|
|
|
See section 4.2 of https://arxiv.org/pdf/1612.03144.pdf for details.
|
|
|
|
Args:
|
|
num_levels: An integer indicating the number of feature levels to crop boxes
|
|
from.
|
|
unit_scale_index: An 0-based integer indicating the index of feature map
|
|
which most closely matches the resolution of the pretrained model.
|
|
image_ratio: A float indicating the ratio of input image area to pretraining
|
|
image area.
|
|
boxes: A float tensor of shape [batch, num_boxes, 4] containing boxes of the
|
|
form [ymin, xmin, ymax, xmax] in normalized coordinates.
|
|
|
|
Returns:
|
|
An int32 tensor of shape [batch_size, num_boxes] containing feature indices.
|
|
"""
|
|
assert num_levels > 0, (
|
|
'`num_levels` must be > 0. Found {}'.format(num_levels))
|
|
assert unit_scale_index < num_levels and unit_scale_index >= 0, (
|
|
'`unit_scale_index` must be in [0, {}). Found {}.'.format(
|
|
num_levels, unit_scale_index))
|
|
box_height_width = boxes[:, :, 2:4] - boxes[:, :, 0:2]
|
|
areas_sqrt = tf.sqrt(tf.reduce_prod(box_height_width, axis=2))
|
|
log_2 = tf.cast(tf.log(2.0), dtype=boxes.dtype)
|
|
levels = tf.cast(
|
|
tf.floordiv(tf.log(areas_sqrt * image_ratio), log_2)
|
|
+
|
|
unit_scale_index,
|
|
dtype=tf.int32)
|
|
levels = tf.maximum(0, tf.minimum(num_levels - 1, levels))
|
|
return levels
|
|
|
|
|
|
def bfloat16_to_float32_nested(tensor_nested):
|
|
"""Convert float32 tensors in a nested structure to bfloat16.
|
|
|
|
Args:
|
|
tensor_nested: A Python dict, values being Tensor or Python list/tuple of
|
|
Tensor.
|
|
|
|
Returns:
|
|
A Python dict with the same structure as `tensor_dict`,
|
|
with all bfloat16 tensors converted to float32.
|
|
"""
|
|
if isinstance(tensor_nested, tf.Tensor):
|
|
if tensor_nested.dtype == tf.bfloat16:
|
|
return tf.cast(tensor_nested, dtype=tf.float32)
|
|
else:
|
|
return tensor_nested
|
|
elif isinstance(tensor_nested, (list, tuple)):
|
|
out_tensor_dict = [bfloat16_to_float32_nested(t) for t in tensor_nested]
|
|
elif isinstance(tensor_nested, dict):
|
|
out_tensor_dict = {
|
|
k: bfloat16_to_float32_nested(v) for k, v in tensor_nested.items()
|
|
}
|
|
return out_tensor_dict
|
|
|
|
|
|
def gather_with_padding_values(input_tensor, indices, padding_value):
|
|
"""Gathers elements from tensor and pads `padding_value` for ignore indices.
|
|
|
|
Gathers elements from `input_tensor` based on `indices`. If there are ignore
|
|
indices (which are "-1"s) in `indices`, `padding_value` will be gathered for
|
|
those positions.
|
|
|
|
Args:
|
|
input_tensor: A N-D tensor of shape [M, d_1, d_2 .. d_(N-1)] to gather
|
|
values from.
|
|
indices: A 1-D tensor in which each element is either an index in the
|
|
first dimension of input_tensor or -1.
|
|
padding_value: A (N-1)-D tensor of shape [d_1, d_2 .. d_(N-1)] which will be
|
|
used as gathered value for each ignore index in `indices`.
|
|
|
|
Returns:
|
|
gathered_tensor: A tensor of shape [L, d_1, d_2 .. d_(N-1)] containing
|
|
values gathered from input_tensor. The first dimension L is equal to the
|
|
length of `indices`.
|
|
"""
|
|
padding_value = tf.expand_dims(padding_value, axis=0)
|
|
input_tensor = tf.concat([padding_value, input_tensor], axis=0)
|
|
gather_indices = indices + 1
|
|
gathered_tensor = tf.gather(input_tensor, gather_indices)
|
|
return gathered_tensor
|
|
|
|
|
|
|
|
|
|
|
|
EqualizationLossConfig = collections.namedtuple('EqualizationLossConfig',
|
|
['weight', 'exclude_prefixes'])
|
|
|
|
|