# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Tests for object_detection.utils.visualization_utils."""
|
|
import logging
|
|
import os
|
|
|
|
import numpy as np
|
|
import PIL.Image as Image
|
|
import tensorflow as tf
|
|
|
|
from object_detection.core import standard_fields as fields
|
|
from object_detection.utils import visualization_utils
|
|
|
|
_TESTDATA_PATH = 'object_detection/test_images'
|
|
|
|
|
|
class VisualizationUtilsTest(tf.test.TestCase):
|
|
|
|
def test_get_prime_multiplier_for_color_randomness(self):
|
|
# Show that default multipler is not 1 and does not divide the total number
|
|
# of standard colors.
|
|
multiplier = visualization_utils._get_multiplier_for_color_randomness()
|
|
self.assertNotEqual(
|
|
0, multiplier % len(visualization_utils.STANDARD_COLORS))
|
|
self.assertNotEqual(1, multiplier)
|
|
|
|
# Show that with 34 colors, the closest prime number to 34/10 that
|
|
# satisfies the constraints is 5.
|
|
visualization_utils.STANDARD_COLORS = [
|
|
'color_{}'.format(str(i)) for i in range(34)
|
|
]
|
|
multiplier = visualization_utils._get_multiplier_for_color_randomness()
|
|
self.assertEqual(5, multiplier)
|
|
|
|
# Show that with 110 colors, the closest prime number to 110/10 that
|
|
# satisfies the constraints is 13 (since 11 equally divides 110).
|
|
visualization_utils.STANDARD_COLORS = [
|
|
'color_{}'.format(str(i)) for i in range(110)
|
|
]
|
|
multiplier = visualization_utils._get_multiplier_for_color_randomness()
|
|
self.assertEqual(13, multiplier)
|
|
|
|
def create_colorful_test_image(self):
|
|
"""This function creates an image that can be used to test vis functions.
|
|
|
|
It makes an image composed of four colored rectangles.
|
|
|
|
Returns:
|
|
colorful test numpy array image.
|
|
"""
|
|
ch255 = np.full([100, 200, 1], 255, dtype=np.uint8)
|
|
ch128 = np.full([100, 200, 1], 128, dtype=np.uint8)
|
|
ch0 = np.full([100, 200, 1], 0, dtype=np.uint8)
|
|
imr = np.concatenate((ch255, ch128, ch128), axis=2)
|
|
img = np.concatenate((ch255, ch255, ch0), axis=2)
|
|
imb = np.concatenate((ch255, ch0, ch255), axis=2)
|
|
imw = np.concatenate((ch128, ch128, ch128), axis=2)
|
|
imu = np.concatenate((imr, img), axis=1)
|
|
imd = np.concatenate((imb, imw), axis=1)
|
|
image = np.concatenate((imu, imd), axis=0)
|
|
return image
|
|
|
|
def create_test_image_with_five_channels(self):
|
|
return np.full([100, 200, 5], 255, dtype=np.uint8)
|
|
|
|
def create_test_grayscale_image(self):
|
|
return np.full([100, 200, 1], 255, dtype=np.uint8)
|
|
|
|
def test_draw_bounding_box_on_image(self):
|
|
test_image = self.create_colorful_test_image()
|
|
test_image = Image.fromarray(test_image)
|
|
width_original, height_original = test_image.size
|
|
ymin = 0.25
|
|
ymax = 0.75
|
|
xmin = 0.4
|
|
xmax = 0.6
|
|
|
|
visualization_utils.draw_bounding_box_on_image(test_image, ymin, xmin, ymax,
|
|
xmax)
|
|
width_final, height_final = test_image.size
|
|
|
|
self.assertEqual(width_original, width_final)
|
|
self.assertEqual(height_original, height_final)
|
|
|
|
def test_draw_bounding_box_on_image_array(self):
|
|
test_image = self.create_colorful_test_image()
|
|
width_original = test_image.shape[0]
|
|
height_original = test_image.shape[1]
|
|
ymin = 0.25
|
|
ymax = 0.75
|
|
xmin = 0.4
|
|
xmax = 0.6
|
|
|
|
visualization_utils.draw_bounding_box_on_image_array(
|
|
test_image, ymin, xmin, ymax, xmax)
|
|
width_final = test_image.shape[0]
|
|
height_final = test_image.shape[1]
|
|
|
|
self.assertEqual(width_original, width_final)
|
|
self.assertEqual(height_original, height_final)
|
|
|
|
def test_draw_bounding_boxes_on_image(self):
|
|
test_image = self.create_colorful_test_image()
|
|
test_image = Image.fromarray(test_image)
|
|
width_original, height_original = test_image.size
|
|
boxes = np.array([[0.25, 0.75, 0.4, 0.6],
|
|
[0.1, 0.1, 0.9, 0.9]])
|
|
|
|
visualization_utils.draw_bounding_boxes_on_image(test_image, boxes)
|
|
width_final, height_final = test_image.size
|
|
|
|
self.assertEqual(width_original, width_final)
|
|
self.assertEqual(height_original, height_final)
|
|
|
|
def test_draw_bounding_boxes_on_image_array(self):
|
|
test_image = self.create_colorful_test_image()
|
|
width_original = test_image.shape[0]
|
|
height_original = test_image.shape[1]
|
|
boxes = np.array([[0.25, 0.75, 0.4, 0.6],
|
|
[0.1, 0.1, 0.9, 0.9]])
|
|
|
|
visualization_utils.draw_bounding_boxes_on_image_array(test_image, boxes)
|
|
width_final = test_image.shape[0]
|
|
height_final = test_image.shape[1]
|
|
|
|
self.assertEqual(width_original, width_final)
|
|
self.assertEqual(height_original, height_final)
|
|
|
|
def test_draw_bounding_boxes_on_image_tensors(self):
|
|
"""Tests that bounding box utility produces reasonable results."""
|
|
category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
|
|
|
|
fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
|
|
image_np = np.array(Image.open(fname))
|
|
images_np = np.stack((image_np, image_np), axis=0)
|
|
original_image_shape = [[636, 512], [636, 512]]
|
|
|
|
with tf.Graph().as_default():
|
|
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
|
|
image_shape = tf.constant(original_image_shape, dtype=tf.int32)
|
|
boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75], [0.5, 0.3, 0.6, 0.9]],
|
|
[[0.25, 0.25, 0.75, 0.75], [0.1, 0.3, 0.6, 1.0]]])
|
|
classes = tf.constant([[1, 1], [1, 2]], dtype=tf.int64)
|
|
scores = tf.constant([[0.8, 0.1], [0.6, 0.5]])
|
|
images_with_boxes = (
|
|
visualization_utils.draw_bounding_boxes_on_image_tensors(
|
|
images_tensor,
|
|
boxes,
|
|
classes,
|
|
scores,
|
|
category_index,
|
|
original_image_spatial_shape=image_shape,
|
|
true_image_shape=image_shape,
|
|
min_score_thresh=0.2))
|
|
|
|
with self.test_session() as sess:
|
|
sess.run(tf.global_variables_initializer())
|
|
|
|
# Write output images for visualization.
|
|
images_with_boxes_np = sess.run(images_with_boxes)
|
|
self.assertEqual(images_np.shape[0], images_with_boxes_np.shape[0])
|
|
self.assertEqual(images_np.shape[3], images_with_boxes_np.shape[3])
|
|
self.assertEqual(
|
|
tuple(original_image_shape[0]), images_with_boxes_np.shape[1:3])
|
|
for i in range(images_with_boxes_np.shape[0]):
|
|
img_name = 'image_' + str(i) + '.png'
|
|
output_file = os.path.join(self.get_temp_dir(), img_name)
|
|
logging.info('Writing output image %d to %s', i, output_file)
|
|
image_pil = Image.fromarray(images_with_boxes_np[i, ...])
|
|
image_pil.save(output_file)
|
|
|
|
def test_draw_bounding_boxes_on_image_tensors_with_track_ids(self):
|
|
"""Tests that bounding box utility produces reasonable results."""
|
|
category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
|
|
|
|
fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
|
|
image_np = np.array(Image.open(fname))
|
|
images_np = np.stack((image_np, image_np), axis=0)
|
|
original_image_shape = [[636, 512], [636, 512]]
|
|
|
|
with tf.Graph().as_default():
|
|
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
|
|
image_shape = tf.constant(original_image_shape, dtype=tf.int32)
|
|
boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75],
|
|
[0.5, 0.3, 0.7, 0.9],
|
|
[0.7, 0.5, 0.8, 0.9]],
|
|
[[0.41, 0.25, 0.75, 0.75],
|
|
[0.51, 0.3, 0.7, 0.9],
|
|
[0.75, 0.5, 0.8, 0.9]]])
|
|
classes = tf.constant([[1, 1, 2], [1, 1, 2]], dtype=tf.int64)
|
|
scores = tf.constant([[0.8, 0.5, 0.7], [0.6, 0.5, 0.8]])
|
|
track_ids = tf.constant([[3, 9, 7], [3, 9, 144]], dtype=tf.int32)
|
|
images_with_boxes = (
|
|
visualization_utils.draw_bounding_boxes_on_image_tensors(
|
|
images_tensor,
|
|
boxes,
|
|
classes,
|
|
scores,
|
|
category_index,
|
|
original_image_spatial_shape=image_shape,
|
|
true_image_shape=image_shape,
|
|
track_ids=track_ids,
|
|
min_score_thresh=0.2))
|
|
|
|
with self.test_session() as sess:
|
|
sess.run(tf.global_variables_initializer())
|
|
|
|
# Write output images for visualization.
|
|
images_with_boxes_np = sess.run(images_with_boxes)
|
|
self.assertEqual(images_np.shape[0], images_with_boxes_np.shape[0])
|
|
self.assertEqual(images_np.shape[3], images_with_boxes_np.shape[3])
|
|
self.assertEqual(
|
|
tuple(original_image_shape[0]), images_with_boxes_np.shape[1:3])
|
|
for i in range(images_with_boxes_np.shape[0]):
|
|
img_name = 'image_with_track_ids_' + str(i) + '.png'
|
|
output_file = os.path.join(self.get_temp_dir(), img_name)
|
|
logging.info('Writing output image %d to %s', i, output_file)
|
|
image_pil = Image.fromarray(images_with_boxes_np[i, ...])
|
|
image_pil.save(output_file)
|
|
|
|
def test_draw_bounding_boxes_on_image_tensors_with_additional_channels(self):
|
|
"""Tests the case where input image tensor has more than 3 channels."""
|
|
category_index = {1: {'id': 1, 'name': 'dog'}}
|
|
image_np = self.create_test_image_with_five_channels()
|
|
images_np = np.stack((image_np, image_np), axis=0)
|
|
|
|
with tf.Graph().as_default():
|
|
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
|
|
boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4])
|
|
classes = tf.constant(0, dtype=tf.int64, shape=[2, 0])
|
|
scores = tf.constant(0, dtype=tf.float32, shape=[2, 0])
|
|
images_with_boxes = (
|
|
visualization_utils.draw_bounding_boxes_on_image_tensors(
|
|
images_tensor,
|
|
boxes,
|
|
classes,
|
|
scores,
|
|
category_index,
|
|
min_score_thresh=0.2))
|
|
|
|
with self.test_session() as sess:
|
|
sess.run(tf.global_variables_initializer())
|
|
|
|
final_images_np = sess.run(images_with_boxes)
|
|
self.assertEqual((2, 100, 200, 3), final_images_np.shape)
|
|
|
|
def test_draw_bounding_boxes_on_image_tensors_grayscale(self):
|
|
"""Tests the case where input image tensor has one channel."""
|
|
category_index = {1: {'id': 1, 'name': 'dog'}}
|
|
image_np = self.create_test_grayscale_image()
|
|
images_np = np.stack((image_np, image_np), axis=0)
|
|
|
|
with tf.Graph().as_default():
|
|
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
|
|
image_shape = tf.constant([[100, 200], [100, 200]], dtype=tf.int32)
|
|
boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4])
|
|
classes = tf.constant(0, dtype=tf.int64, shape=[2, 0])
|
|
scores = tf.constant(0, dtype=tf.float32, shape=[2, 0])
|
|
images_with_boxes = (
|
|
visualization_utils.draw_bounding_boxes_on_image_tensors(
|
|
images_tensor,
|
|
boxes,
|
|
classes,
|
|
scores,
|
|
category_index,
|
|
original_image_spatial_shape=image_shape,
|
|
true_image_shape=image_shape,
|
|
min_score_thresh=0.2))
|
|
|
|
with self.test_session() as sess:
|
|
sess.run(tf.global_variables_initializer())
|
|
|
|
final_images_np = sess.run(images_with_boxes)
|
|
self.assertEqual((2, 100, 200, 3), final_images_np.shape)
|
|
|
|
def test_draw_keypoints_on_image(self):
|
|
test_image = self.create_colorful_test_image()
|
|
test_image = Image.fromarray(test_image)
|
|
width_original, height_original = test_image.size
|
|
keypoints = [[0.25, 0.75], [0.4, 0.6], [0.1, 0.1], [0.9, 0.9]]
|
|
|
|
visualization_utils.draw_keypoints_on_image(test_image, keypoints)
|
|
width_final, height_final = test_image.size
|
|
|
|
self.assertEqual(width_original, width_final)
|
|
self.assertEqual(height_original, height_final)
|
|
|
|
def test_draw_keypoints_on_image_array(self):
|
|
test_image = self.create_colorful_test_image()
|
|
width_original = test_image.shape[0]
|
|
height_original = test_image.shape[1]
|
|
keypoints = [[0.25, 0.75], [0.4, 0.6], [0.1, 0.1], [0.9, 0.9]]
|
|
|
|
visualization_utils.draw_keypoints_on_image_array(test_image, keypoints)
|
|
width_final = test_image.shape[0]
|
|
height_final = test_image.shape[1]
|
|
|
|
self.assertEqual(width_original, width_final)
|
|
self.assertEqual(height_original, height_final)
|
|
|
|
def test_draw_mask_on_image_array(self):
|
|
test_image = np.asarray([[[0, 0, 0], [0, 0, 0]],
|
|
[[0, 0, 0], [0, 0, 0]]], dtype=np.uint8)
|
|
mask = np.asarray([[0, 1],
|
|
[1, 1]], dtype=np.uint8)
|
|
expected_result = np.asarray([[[0, 0, 0], [0, 0, 127]],
|
|
[[0, 0, 127], [0, 0, 127]]], dtype=np.uint8)
|
|
visualization_utils.draw_mask_on_image_array(test_image, mask,
|
|
color='Blue', alpha=.5)
|
|
self.assertAllEqual(test_image, expected_result)
|
|
|
|
def test_add_cdf_image_summary(self):
|
|
values = [0.1, 0.2, 0.3, 0.4, 0.42, 0.44, 0.46, 0.48, 0.50]
|
|
visualization_utils.add_cdf_image_summary(values, 'PositiveAnchorLoss')
|
|
cdf_image_summary = tf.get_collection(key=tf.GraphKeys.SUMMARIES)[0]
|
|
with self.test_session():
|
|
cdf_image_summary.eval()
|
|
|
|
def test_add_hist_image_summary(self):
|
|
values = [0.1, 0.2, 0.3, 0.4, 0.42, 0.44, 0.46, 0.48, 0.50]
|
|
bins = [0.01 * i for i in range(101)]
|
|
visualization_utils.add_hist_image_summary(values, bins,
|
|
'ScoresDistribution')
|
|
hist_image_summary = tf.get_collection(key=tf.GraphKeys.SUMMARIES)[0]
|
|
with self.test_session():
|
|
hist_image_summary.eval()
|
|
|
|
def test_eval_metric_ops(self):
|
|
category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
|
|
max_examples_to_draw = 4
|
|
metric_op_base = 'Detections_Left_Groundtruth_Right'
|
|
eval_metric_ops = visualization_utils.VisualizeSingleFrameDetections(
|
|
category_index,
|
|
max_examples_to_draw=max_examples_to_draw,
|
|
summary_name_prefix=metric_op_base)
|
|
original_image = tf.placeholder(tf.uint8, [4, None, None, 3])
|
|
original_image_spatial_shape = tf.placeholder(tf.int32, [4, 2])
|
|
true_image_shape = tf.placeholder(tf.int32, [4, 3])
|
|
detection_boxes = tf.random_uniform([4, 20, 4],
|
|
minval=0.0,
|
|
maxval=1.0,
|
|
dtype=tf.float32)
|
|
detection_classes = tf.random_uniform([4, 20],
|
|
minval=1,
|
|
maxval=3,
|
|
dtype=tf.int64)
|
|
detection_scores = tf.random_uniform([4, 20],
|
|
minval=0.,
|
|
maxval=1.,
|
|
dtype=tf.float32)
|
|
groundtruth_boxes = tf.random_uniform([4, 8, 4],
|
|
minval=0.0,
|
|
maxval=1.0,
|
|
dtype=tf.float32)
|
|
groundtruth_classes = tf.random_uniform([4, 8],
|
|
minval=1,
|
|
maxval=3,
|
|
dtype=tf.int64)
|
|
eval_dict = {
|
|
fields.DetectionResultFields.detection_boxes:
|
|
detection_boxes,
|
|
fields.DetectionResultFields.detection_classes:
|
|
detection_classes,
|
|
fields.DetectionResultFields.detection_scores:
|
|
detection_scores,
|
|
fields.InputDataFields.original_image:
|
|
original_image,
|
|
fields.InputDataFields.original_image_spatial_shape: (
|
|
original_image_spatial_shape),
|
|
fields.InputDataFields.true_image_shape: (true_image_shape),
|
|
fields.InputDataFields.groundtruth_boxes:
|
|
groundtruth_boxes,
|
|
fields.InputDataFields.groundtruth_classes:
|
|
groundtruth_classes
|
|
}
|
|
metric_ops = eval_metric_ops.get_estimator_eval_metric_ops(eval_dict)
|
|
_, update_op = metric_ops[metric_ops.keys()[0]]
|
|
|
|
with self.test_session() as sess:
|
|
sess.run(tf.global_variables_initializer())
|
|
value_ops = {}
|
|
for key, (value_op, _) in metric_ops.iteritems():
|
|
value_ops[key] = value_op
|
|
|
|
# First run enough update steps to surpass `max_examples_to_draw`.
|
|
for i in range(max_examples_to_draw):
|
|
# Use a unique image shape on each eval image.
|
|
sess.run(
|
|
update_op,
|
|
feed_dict={
|
|
original_image:
|
|
np.random.randint(
|
|
low=0,
|
|
high=256,
|
|
size=(4, 6 + i, 7 + i, 3),
|
|
dtype=np.uint8),
|
|
original_image_spatial_shape: [[6 + i, 7 + i], [6 + i, 7 + i],
|
|
[6 + i, 7 + i], [6 + i, 7 + i]],
|
|
true_image_shape: [[6 + i, 7 + i, 3], [6 + i, 7 + i, 3],
|
|
[6 + i, 7 + i, 3], [6 + i, 7 + i, 3]]
|
|
})
|
|
value_ops_out = sess.run(value_ops)
|
|
for key, value_op in value_ops_out.iteritems():
|
|
self.assertNotEqual('', value_op)
|
|
|
|
# Now run fewer update steps than `max_examples_to_draw`. A single value
|
|
# op will be the empty string, since not enough image summaries can be
|
|
# produced.
|
|
for i in range(max_examples_to_draw - 1):
|
|
# Use a unique image shape on each eval image.
|
|
sess.run(
|
|
update_op,
|
|
feed_dict={
|
|
original_image:
|
|
np.random.randint(
|
|
low=0,
|
|
high=256,
|
|
size=(4, 6 + i, 7 + i, 3),
|
|
dtype=np.uint8),
|
|
original_image_spatial_shape: [[6 + i, 7 + i], [6 + i, 7 + i],
|
|
[6 + i, 7 + i], [6 + i, 7 + i]],
|
|
true_image_shape: [[6 + i, 7 + i, 3], [6 + i, 7 + i, 3],
|
|
[6 + i, 7 + i, 3], [6 + i, 7 + i, 3]]
|
|
})
|
|
value_ops_out = sess.run(value_ops)
|
|
self.assertEqual(
|
|
'',
|
|
value_ops_out[metric_op_base + '/' + str(max_examples_to_draw - 1)])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|