You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

145 lines
3.4 KiB

import cv2
import numpy as np
import json
from pysolar.solar import *
from datetime import datetime
from PIL import Image
from matplotlib import pyplot as plt
def generateAvg(locs, img, avgs):
time = datetime.strptime( "2019-04-27 17:52:00 -0300","%Y-%m-%d %H:%M:%S %z")
altitude = int(get_altitude(39.9127938,32.8073577,time))
loc_images = {}
for i in locs:
temp = locs[i]
crop_img = img[temp["y1"]:temp["y2"], temp["x1"]:temp["x2"]]
loc_images[i]=[crop_img]
vals = {}
if str(altitude) in avgs:
vals = avgs[str(altitude)]
else:
for spot in loc_images:
vals[spot] = loc_images[spot]
for spot in loc_images:
for col in range(len(vals[spot][0])):
for pix in range(len(vals[spot][0][col])):
vals[spot][0][col][pix] = [
np.uint8((int(vals[spot][0][col][pix][0]) + int(loc_images[spot][0][col][pix][0]))/2),
np.uint8((int(vals[spot][0][col][pix][1]) + int(loc_images[spot][0][col][pix][1]))/2),
np.uint8((int(vals[spot][0][col][pix][2]) + int(loc_images[spot][0][col][pix][2]))/2)]
for i in vals:
vals[i] = vals[i][0].tolist()
avgs[altitude] = vals
return avgs
def generateData(locs, img, avgs,show):
time = datetime.strptime( "2019-04-27 17:52:00 -0300","%Y-%m-%d %H:%M:%S %z")
altitude = int(get_altitude(39.9127938,32.8073577,time))
loc_images = {}
distances = {}
for i in locs:
temp = locs[i]
crop_img = img[temp["y1"]:temp["y2"], temp["x1"]:temp["x2"]]
loc_images[i]=[crop_img]
vals = {}
if str(altitude) in avgs:
for spot in avgs[str(altitude)]:
vals[spot] = np.array(avgs[str(altitude)][spot])
else:
for spot in loc_images:
vals[spot] = loc_images[spot]
for spot in loc_images:
foo = np.zeros((len(vals[spot]),len(vals[spot][0])),dtype=int)
distances[spot] = 0
for col in range(len(vals[spot])):
for pix in range(len(vals[spot][col])):
vals[spot][col][pix] = [
np.uint8(abs(int(vals[spot][col][pix][0]) - int(loc_images[spot][0][col][pix][0]))),
np.uint8(abs(int(vals[spot][col][pix][1]) - int(loc_images[spot][0][col][pix][1]))),
np.uint8(abs(int(vals[spot][col][pix][2]) - int(loc_images[spot][0][col][pix][2])))]
distances[spot] += np.sum(vals[spot][col][pix])
foo[col][pix] = np.max(vals[spot][col][pix])
distances[spot] = int(distances[spot]/vals[spot].size)
vals[spot] = foo
if spot in show:
plt.imshow(vals[spot], interpolation='nearest')
plt.show()
return distances
plt.axis("off")
with open("databases/locations.json","r") as f:
locs = json.loads(f.read())
with open("databases/park_data.json","r") as f:
data = json.loads(f.read())
while 0:
data = generateAvg(locs,cv2.imread("parking_images/8.jpg"),data)
with open("databases/park_data.json","w") as f:
f.write(json.dumps(data,indent=4))
exit(0)
image = cv2.imread("parking_images/7.jpg")
spot_data = generateData(locs,image,data,["0","1","2"])
print(spot_data)
best_spot = -1
for loc in spot_data:
spot_data[loc] = spot_data[loc] < 30
color = (0,255*spot_data[loc],255*(not spot_data[loc]))
cv2.rectangle(image,(locs[loc]["x1"],locs[loc]["y1"]),(locs[loc]["x2"],locs[loc]["y2"]),color,5)
if spot_data[loc]:
if best_spot == -1:
best_spot = loc
continue
if locs[loc]["priority"] < locs[best_spot]["priority"]:
best_spot = loc
print(spot_data)
if best_spot == -1:
print("Sorry, no spot found :(")
else:
print("Empty spot found at {}".format(int(best_spot) + 1))
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.show()