from modules import utils
|
|
|
|
from flask import Flask, request, Response
|
|
from flask_restful import Resource, Api
|
|
|
|
from PIL import Image
|
|
|
|
import base64
|
|
import json
|
|
import sys
|
|
import os
|
|
import io
|
|
|
|
if sys.platform == "win32":
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
import pickle
|
|
|
|
sys.path.insert(0, r'C:\Users\Tednokent01\Downloads\MyCity\traffic_analyzer')
|
|
from utils import label_map_util
|
|
|
|
from utils import visualization_utils as vis_util
|
|
|
|
app = Flask(__name__)
|
|
api = Api(app)
|
|
|
|
db_path = os.path.join(app.root_path, 'databases', 'crashes.json')
|
|
with open(db_path, 'r') as f:
|
|
crashes = json.load(f)
|
|
|
|
users_path = os.path.join(app.root_path, 'databases', 'users.json')
|
|
with open(users_path, 'r') as f:
|
|
users = json.load(f)
|
|
|
|
if sys.platform == "win32":
|
|
PATH_TO_LABELS = '../../traffic_analyzer/object_detection/data/kitti_label_map.pbtxt'
|
|
PATH_TO_CKPT = 'modules/faster_rcnn_resnet101_kitti_2018_01_28/frozen_inference_graph.pb'
|
|
|
|
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
|
|
|
|
def process_img(img):
|
|
pass
|
|
|
|
class Crash(Resource):
|
|
def post(self):
|
|
message = request.form['message']
|
|
base64_img = request.form['img']
|
|
id = request.form['id']
|
|
|
|
process_img(Image.open(io.BytesIO(base64.b64decode(base64_img))))
|
|
|
|
|
|
return id
|