from flask import Flask, request
|
|
from flask_restful import Resource, Api, abort
|
|
|
|
import json
|
|
import io
|
|
import base64
|
|
from PIL import Image
|
|
import sys
|
|
import datetime
|
|
import cv2
|
|
import ssl
|
|
from urllib.parse import urlencode
|
|
from urllib.request import Request, urlopen
|
|
|
|
|
|
if sys.platform == "win32":
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
import pickle
|
|
|
|
sys.path.insert(0, r'C:\Users\Tednokent01\Downloads\MyCity\traffic_analyzer')
|
|
from object_detection.utils import label_map_util
|
|
|
|
from object_detection.utils import visualization_utils as vis_util
|
|
|
|
app = Flask(__name__)
|
|
api = Api(app)
|
|
|
|
context = ssl._create_unverified_context()
|
|
|
|
score_dict = {
|
|
1: 1,
|
|
2: 1,
|
|
3: 1,
|
|
4: 1,
|
|
5: 1,
|
|
6: 1,
|
|
7: 1,
|
|
8: 1
|
|
}
|
|
|
|
with open("modules/databases/complaints.json","r") as f:
|
|
complaints = json.load(f)
|
|
|
|
if sys.platform == "win32":
|
|
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
|
|
|
# List of the strings that is used to add correct label for each box.
|
|
PATH_TO_LABELS = 'modules/trainedModels/crack_label_map.pbtxt'
|
|
|
|
NUM_CLASSES = 8
|
|
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
|
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
|
|
category_index = label_map_util.create_category_index(categories)
|
|
|
|
def load_image_into_numpy_array(image):
|
|
(im_width, im_height) = image.size
|
|
return np.array(image.getdata()).reshape(
|
|
(im_height, im_width, 3)).astype(np.uint8)
|
|
|
|
def process_img(img_base64):
|
|
|
|
if sys.platform == "win32":
|
|
|
|
url = 'https://127.0.0.1:5000/ai' # Set destination URL here
|
|
post_fields = {'img': img_base64,"type":"damage"} # Set POST fields here
|
|
|
|
request = Request(url, urlencode(post_fields).encode())
|
|
img = load_image_into_numpy_array(Image.open(io.BytesIO(base64.b64decode(img_base64))))
|
|
|
|
output_dict = json.loads(json.loads(urlopen(request, context=context).read()))
|
|
print(output_dict)
|
|
vis_util.visualize_boxes_and_labels_on_image_array(
|
|
img,
|
|
np.array(output_dict['detection_boxes']),
|
|
output_dict['detection_classes'],
|
|
output_dict['detection_scores'],
|
|
category_index,
|
|
instance_masks=output_dict.get('detection_masks'),
|
|
use_normalized_coordinates=True,
|
|
line_thickness=8,
|
|
min_score_thresh=0.3
|
|
)
|
|
defects = []
|
|
for index, i in enumerate(output_dict['detection_classes']):
|
|
score = output_dict['detection_scores'][index]
|
|
if score > 0.3:
|
|
defects.append(i)
|
|
|
|
priority = 0
|
|
for i in defects:
|
|
priority += score_dict[i]
|
|
|
|
if priority > 10:
|
|
priority = 10
|
|
|
|
buffered = io.BytesIO()
|
|
img = Image.fromarray(img, 'RGB')
|
|
img.save(buffered, format="JPEG")
|
|
img_str = base64.b64encode(buffered.getvalue())
|
|
return img_str.decode("ascii"),priority,defects
|
|
|
|
return img_base64, 7,["unprocessed"]
|
|
|
|
class Complaint(Resource):
|
|
def post(self):
|
|
args = request.form.to_dict()
|
|
|
|
complaint = args
|
|
|
|
complaint["response"] = {"status":False}
|
|
|
|
img_process,priority,tags = process_img(complaint["img"])
|
|
|
|
complaint["img"] = img_process
|
|
complaint["response"]["priority"] = str(priority)
|
|
complaint["tags"] = list(map(str, tags))
|
|
complaint["datetime"] = datetime.datetime.now().strftime('%b-%d-%I:%M %p-%G')
|
|
|
|
try:
|
|
complaints[complaint["id"]].append(complaint)
|
|
except KeyError:
|
|
complaints[complaint["id"]] = [complaint]
|
|
|
|
del complaints[complaint["id"]][-1]["id"]
|
|
with open('modules/databases/complaints.json', 'w') as complaints_file:
|
|
json.dump(complaints, complaints_file, indent=4)
|
|
|
|
|
|
class Complaints(Resource):
|
|
def post(self):
|
|
id = request.form["id"]
|
|
return complaints[id]
|
|
|
|
|
|
class ComplaintsUpdate(Resource):
|
|
def get(self):
|
|
args = request.args
|
|
complaints[args.get("id")][int(args.get("index"))]["response"]["message"] = args.get("message")
|
|
complaints[args["id"]][int(args["index"])]["response"]["status"] = True
|
|
with open('modules/databases/complaints.json', 'w') as complaints_file:
|
|
json.dump(complaints, complaints_file, indent=4)
|
|
return
|