{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "V8-yl-s-WKMG"
|
|
},
|
|
"source": [
|
|
"# Object Detection Demo\n",
|
|
"Welcome to the object detection inference walkthrough! This notebook will walk you step by step through the process of using a pre-trained model to detect objects in an image. Make sure to follow the [installation instructions](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md) before you start."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "kFSqkTCdWKMI"
|
|
},
|
|
"source": [
|
|
"# Imports"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"autoexec": {
|
|
"startup": false,
|
|
"wait_interval": 0
|
|
}
|
|
},
|
|
"colab_type": "code",
|
|
"id": "hV4P5gyTWKMI"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import os\n",
|
|
"import six.moves.urllib as urllib\n",
|
|
"import sys,getpass\n",
|
|
"import tarfile\n",
|
|
"import tensorflow as tf\n",
|
|
"import zipfile\n",
|
|
"\n",
|
|
"from distutils.version import StrictVersion\n",
|
|
"from collections import defaultdict\n",
|
|
"from io import StringIO\n",
|
|
"from matplotlib import pyplot as plt\n",
|
|
"from PIL import Image\n",
|
|
"\n",
|
|
"# This is needed since the notebook is stored in the object_detection folder.\n",
|
|
"sys.path.append(\"..\")\n",
|
|
"from object_detection.utils import ops as utils_ops\n",
|
|
"\n",
|
|
"if StrictVersion(tf.__version__) \u003c StrictVersion('1.12.0'):\n",
|
|
" raise ImportError('Please upgrade your TensorFlow installation to v1.12.*.')\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "Wy72mWwAWKMK"
|
|
},
|
|
"source": [
|
|
"## Env setup"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"autoexec": {
|
|
"startup": false,
|
|
"wait_interval": 0
|
|
}
|
|
},
|
|
"colab_type": "code",
|
|
"id": "v7m_NY_aWKMK"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# This is needed to display the images.\n",
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "r5FNuiRPWKMN"
|
|
},
|
|
"source": [
|
|
"## Object detection imports\n",
|
|
"Here are the imports from the object detection module."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"autoexec": {
|
|
"startup": false,
|
|
"wait_interval": 0
|
|
}
|
|
},
|
|
"colab_type": "code",
|
|
"id": "bm0_uNRnWKMN"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from utils import label_map_util\n",
|
|
"\n",
|
|
"from utils import visualization_utils as vis_util"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "cfn_tRFOWKMO"
|
|
},
|
|
"source": [
|
|
"# Model preparation "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "X_sEBLpVWKMQ"
|
|
},
|
|
"source": [
|
|
"## Variables\n",
|
|
"\n",
|
|
"Any model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_FROZEN_GRAPH` to point to a new .pb file. \n",
|
|
"\n",
|
|
"By default we use an \"SSD with Mobilenet\" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"autoexec": {
|
|
"startup": false,
|
|
"wait_interval": 0
|
|
}
|
|
},
|
|
"colab_type": "code",
|
|
"id": "VyPz_t8WWKMQ"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# What model to download.\n",
|
|
"MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'\n",
|
|
"MODEL_FILE = MODEL_NAME + '.tar.gz'\n",
|
|
"DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'\n",
|
|
"\n",
|
|
"# Path to frozen detection graph. This is the actual model that is used for the object detection.\n",
|
|
"PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'\n",
|
|
"\n",
|
|
"# List of the strings that is used to add correct label for each box.\n",
|
|
"PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "7ai8pLZZWKMS"
|
|
},
|
|
"source": [
|
|
"## Download Model"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"autoexec": {
|
|
"startup": false,
|
|
"wait_interval": 0
|
|
}
|
|
},
|
|
"colab_type": "code",
|
|
"id": "KILYnwR5WKMS"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"opener = urllib.request.URLopener()\n",
|
|
"opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)\n",
|
|
"tar_file = tarfile.open(MODEL_FILE)\n",
|
|
"for file in tar_file.getmembers():\n",
|
|
" file_name = os.path.basename(file.name)\n",
|
|
" if 'frozen_inference_graph.pb' in file_name:\n",
|
|
" tar_file.extract(file, os.getcwd())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "YBcB9QHLWKMU"
|
|
},
|
|
"source": [
|
|
"## Load a (frozen) Tensorflow model into memory."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"autoexec": {
|
|
"startup": false,
|
|
"wait_interval": 0
|
|
}
|
|
},
|
|
"colab_type": "code",
|
|
"id": "KezjCRVvWKMV"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"detection_graph = tf.Graph()\n",
|
|
"with detection_graph.as_default():\n",
|
|
" od_graph_def = tf.GraphDef()\n",
|
|
" with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:\n",
|
|
" serialized_graph = fid.read()\n",
|
|
" od_graph_def.ParseFromString(serialized_graph)\n",
|
|
" tf.import_graph_def(od_graph_def, name='')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "_1MVVTcLWKMW"
|
|
},
|
|
"source": [
|
|
"## Loading label map\n",
|
|
"Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"autoexec": {
|
|
"startup": false,
|
|
"wait_interval": 0
|
|
}
|
|
},
|
|
"colab_type": "code",
|
|
"id": "hDbpHkiWWKMX"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "EFsoUHvbWKMZ"
|
|
},
|
|
"source": [
|
|
"## Helper code"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"autoexec": {
|
|
"startup": false,
|
|
"wait_interval": 0
|
|
}
|
|
},
|
|
"colab_type": "code",
|
|
"id": "aSlYc3JkWKMa"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"def load_image_into_numpy_array(image):\n",
|
|
" (im_width, im_height) = image.size\n",
|
|
" return np.array(image.getdata()).reshape(\n",
|
|
" (im_height, im_width, 3)).astype(np.uint8)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "H0_1AGhrWKMc"
|
|
},
|
|
"source": [
|
|
"# Detection"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"autoexec": {
|
|
"startup": false,
|
|
"wait_interval": 0
|
|
}
|
|
},
|
|
"colab_type": "code",
|
|
"id": "jG-zn5ykWKMd"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# For the sake of simplicity we will use only 2 images:\n",
|
|
"# image1.jpg\n",
|
|
"# image2.jpg\n",
|
|
"# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.\n",
|
|
"PATH_TO_TEST_IMAGES_DIR = 'test_images'\n",
|
|
"TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]\n",
|
|
"\n",
|
|
"# Size, in inches, of the output images.\n",
|
|
"IMAGE_SIZE = (12, 8)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"autoexec": {
|
|
"startup": false,
|
|
"wait_interval": 0
|
|
}
|
|
},
|
|
"colab_type": "code",
|
|
"id": "92BHxzcNWKMf"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"def run_inference_for_single_image(image, graph):\n",
|
|
" with graph.as_default():\n",
|
|
" with tf.Session() as sess:\n",
|
|
" # Get handles to input and output tensors\n",
|
|
" ops = tf.get_default_graph().get_operations()\n",
|
|
" all_tensor_names = {output.name for op in ops for output in op.outputs}\n",
|
|
" tensor_dict = {}\n",
|
|
" for key in [\n",
|
|
" 'num_detections', 'detection_boxes', 'detection_scores',\n",
|
|
" 'detection_classes', 'detection_masks'\n",
|
|
" ]:\n",
|
|
" tensor_name = key + ':0'\n",
|
|
" if tensor_name in all_tensor_names:\n",
|
|
" tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(\n",
|
|
" tensor_name)\n",
|
|
" if 'detection_masks' in tensor_dict:\n",
|
|
" # The following processing is only for single image\n",
|
|
" detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])\n",
|
|
" detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])\n",
|
|
" # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.\n",
|
|
" real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)\n",
|
|
" detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])\n",
|
|
" detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])\n",
|
|
" detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(\n",
|
|
" detection_masks, detection_boxes, image.shape[1], image.shape[2])\n",
|
|
" detection_masks_reframed = tf.cast(\n",
|
|
" tf.greater(detection_masks_reframed, 0.5), tf.uint8)\n",
|
|
" # Follow the convention by adding back the batch dimension\n",
|
|
" tensor_dict['detection_masks'] = tf.expand_dims(\n",
|
|
" detection_masks_reframed, 0)\n",
|
|
" image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')\n",
|
|
"\n",
|
|
" # Run inference\n",
|
|
" output_dict = sess.run(tensor_dict,\n",
|
|
" feed_dict={image_tensor: image})\n",
|
|
"\n",
|
|
" # all outputs are float32 numpy arrays, so convert types as appropriate\n",
|
|
" output_dict['num_detections'] = int(output_dict['num_detections'][0])\n",
|
|
" output_dict['detection_classes'] = output_dict[\n",
|
|
" 'detection_classes'][0].astype(np.int64)\n",
|
|
" output_dict['detection_boxes'] = output_dict['detection_boxes'][0]\n",
|
|
" output_dict['detection_scores'] = output_dict['detection_scores'][0]\n",
|
|
" if 'detection_masks' in output_dict:\n",
|
|
" output_dict['detection_masks'] = output_dict['detection_masks'][0]\n",
|
|
" return output_dict"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"autoexec": {
|
|
"startup": false,
|
|
"wait_interval": 0
|
|
}
|
|
},
|
|
"colab_type": "code",
|
|
"id": "3a5wMHN8WKMh"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"for image_path in TEST_IMAGE_PATHS:\n",
|
|
" image = Image.open(image_path)\n",
|
|
" # the array based representation of the image will be used later in order to prepare the\n",
|
|
" # result image with boxes and labels on it.\n",
|
|
" image_np = load_image_into_numpy_array(image)\n",
|
|
" # Expand dimensions since the model expects images to have shape: [1, None, None, 3]\n",
|
|
" image_np_expanded = np.expand_dims(image_np, axis=0)\n",
|
|
" # Actual detection.\n",
|
|
" output_dict = run_inference_for_single_image(image_np_expanded, detection_graph)\n",
|
|
" # Visualization of the results of a detection.\n",
|
|
" vis_util.visualize_boxes_and_labels_on_image_array(\n",
|
|
" image_np,\n",
|
|
" output_dict['detection_boxes'],\n",
|
|
" output_dict['detection_classes'],\n",
|
|
" output_dict['detection_scores'],\n",
|
|
" category_index,\n",
|
|
" instance_masks=output_dict.get('detection_masks'),\n",
|
|
" use_normalized_coordinates=True,\n",
|
|
" line_thickness=8)\n",
|
|
" plt.figure(figsize=IMAGE_SIZE)\n",
|
|
" plt.imshow(image_np)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"autoexec": {
|
|
"startup": false,
|
|
"wait_interval": 0
|
|
}
|
|
},
|
|
"colab_type": "code",
|
|
"id": "LQSEnEsPWKMj"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
""
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"colab": {
|
|
"default_view": {},
|
|
"name": "object_detection_tutorial.ipynb?workspaceId=ronnyvotel:python_inference::citc",
|
|
"provenance": [],
|
|
"version": "0.3.2",
|
|
"views": {}
|
|
},
|
|
"kernelspec": {
|
|
"display_name": "Python 2",
|
|
"language": "python",
|
|
"name": "python2"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
}
|