You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

257 lines
11 KiB

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow_models.object_detection.utils.vrd_evaluation."""
import numpy as np
import tensorflow as tf
from object_detection.core import standard_fields
from object_detection.utils import vrd_evaluation
class VRDRelationDetectionEvaluatorTest(tf.test.TestCase):
def test_vrdrelation_evaluator(self):
self.vrd_eval = vrd_evaluation.VRDRelationDetectionEvaluator()
image_key1 = 'img1'
groundtruth_box_tuples1 = np.array(
[([0, 0, 1, 1], [1, 1, 2, 2]), ([0, 0, 1, 1], [1, 2, 2, 3])],
dtype=vrd_evaluation.vrd_box_data_type)
groundtruth_class_tuples1 = np.array(
[(1, 2, 3), (1, 4, 3)], dtype=vrd_evaluation.label_data_type)
groundtruth_verified_labels1 = np.array([1, 2, 3, 4, 5], dtype=int)
self.vrd_eval.add_single_ground_truth_image_info(
image_key1, {
standard_fields.InputDataFields.groundtruth_boxes:
groundtruth_box_tuples1,
standard_fields.InputDataFields.groundtruth_classes:
groundtruth_class_tuples1,
standard_fields.InputDataFields.groundtruth_image_classes:
groundtruth_verified_labels1
})
image_key2 = 'img2'
groundtruth_box_tuples2 = np.array(
[([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type)
groundtruth_class_tuples2 = np.array(
[(1, 4, 3)], dtype=vrd_evaluation.label_data_type)
self.vrd_eval.add_single_ground_truth_image_info(
image_key2, {
standard_fields.InputDataFields.groundtruth_boxes:
groundtruth_box_tuples2,
standard_fields.InputDataFields.groundtruth_classes:
groundtruth_class_tuples2,
})
image_key3 = 'img3'
groundtruth_box_tuples3 = np.array(
[([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type)
groundtruth_class_tuples3 = np.array(
[(1, 2, 4)], dtype=vrd_evaluation.label_data_type)
self.vrd_eval.add_single_ground_truth_image_info(
image_key3, {
standard_fields.InputDataFields.groundtruth_boxes:
groundtruth_box_tuples3,
standard_fields.InputDataFields.groundtruth_classes:
groundtruth_class_tuples3,
})
image_key = 'img1'
detected_box_tuples = np.array(
[([0, 0.3, 1, 1], [1.1, 1, 2, 2]), ([0, 0, 1, 1], [1, 1, 2, 2]),
([0.5, 0, 1, 1], [1, 1, 3, 3])],
dtype=vrd_evaluation.vrd_box_data_type)
detected_class_tuples = np.array(
[(1, 2, 5), (1, 2, 3), (1, 6, 3)], dtype=vrd_evaluation.label_data_type)
detected_scores = np.array([0.7, 0.8, 0.9], dtype=float)
self.vrd_eval.add_single_detected_image_info(
image_key, {
standard_fields.DetectionResultFields.detection_boxes:
detected_box_tuples,
standard_fields.DetectionResultFields.detection_scores:
detected_scores,
standard_fields.DetectionResultFields.detection_classes:
detected_class_tuples
})
metrics = self.vrd_eval.evaluate()
self.assertAlmostEqual(metrics['VRDMetric_Relationships_weightedAP@0.5IOU'],
0.25)
self.assertAlmostEqual(metrics['VRDMetric_Relationships_mAP@0.5IOU'],
0.1666666666666666)
self.assertAlmostEqual(metrics['VRDMetric_Relationships_AP@0.5IOU/3'],
0.3333333333333333)
self.assertAlmostEqual(metrics['VRDMetric_Relationships_AP@0.5IOU/4'], 0)
self.assertAlmostEqual(metrics['VRDMetric_Relationships_Recall@50@0.5IOU'],
0.25)
self.assertAlmostEqual(metrics['VRDMetric_Relationships_Recall@100@0.5IOU'],
0.25)
self.vrd_eval.clear()
self.assertFalse(self.vrd_eval._image_ids)
class VRDPhraseDetectionEvaluatorTest(tf.test.TestCase):
def test_vrdphrase_evaluator(self):
self.vrd_eval = vrd_evaluation.VRDPhraseDetectionEvaluator()
image_key1 = 'img1'
groundtruth_box_tuples1 = np.array(
[([0, 0, 1, 1], [1, 1, 2, 2]), ([0, 0, 1, 1], [1, 2, 2, 3])],
dtype=vrd_evaluation.vrd_box_data_type)
groundtruth_class_tuples1 = np.array(
[(1, 2, 3), (1, 4, 3)], dtype=vrd_evaluation.label_data_type)
groundtruth_verified_labels1 = np.array([1, 2, 3, 4, 5], dtype=int)
self.vrd_eval.add_single_ground_truth_image_info(
image_key1, {
standard_fields.InputDataFields.groundtruth_boxes:
groundtruth_box_tuples1,
standard_fields.InputDataFields.groundtruth_classes:
groundtruth_class_tuples1,
standard_fields.InputDataFields.groundtruth_image_classes:
groundtruth_verified_labels1
})
image_key2 = 'img2'
groundtruth_box_tuples2 = np.array(
[([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type)
groundtruth_class_tuples2 = np.array(
[(1, 4, 3)], dtype=vrd_evaluation.label_data_type)
self.vrd_eval.add_single_ground_truth_image_info(
image_key2, {
standard_fields.InputDataFields.groundtruth_boxes:
groundtruth_box_tuples2,
standard_fields.InputDataFields.groundtruth_classes:
groundtruth_class_tuples2,
})
image_key3 = 'img3'
groundtruth_box_tuples3 = np.array(
[([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type)
groundtruth_class_tuples3 = np.array(
[(1, 2, 4)], dtype=vrd_evaluation.label_data_type)
self.vrd_eval.add_single_ground_truth_image_info(
image_key3, {
standard_fields.InputDataFields.groundtruth_boxes:
groundtruth_box_tuples3,
standard_fields.InputDataFields.groundtruth_classes:
groundtruth_class_tuples3,
})
image_key = 'img1'
detected_box_tuples = np.array(
[([0, 0.3, 0.5, 0.5], [0.3, 0.3, 1.0, 1.0]),
([0, 0, 1.2, 1.2], [0.0, 0.0, 2.0, 2.0]),
([0.5, 0, 1, 1], [1, 1, 3, 3])],
dtype=vrd_evaluation.vrd_box_data_type)
detected_class_tuples = np.array(
[(1, 2, 5), (1, 2, 3), (1, 6, 3)], dtype=vrd_evaluation.label_data_type)
detected_scores = np.array([0.7, 0.8, 0.9], dtype=float)
self.vrd_eval.add_single_detected_image_info(
image_key, {
standard_fields.DetectionResultFields.detection_boxes:
detected_box_tuples,
standard_fields.DetectionResultFields.detection_scores:
detected_scores,
standard_fields.DetectionResultFields.detection_classes:
detected_class_tuples
})
metrics = self.vrd_eval.evaluate()
self.assertAlmostEqual(metrics['VRDMetric_Phrases_weightedAP@0.5IOU'], 0.25)
self.assertAlmostEqual(metrics['VRDMetric_Phrases_mAP@0.5IOU'],
0.1666666666666666)
self.assertAlmostEqual(metrics['VRDMetric_Phrases_AP@0.5IOU/3'],
0.3333333333333333)
self.assertAlmostEqual(metrics['VRDMetric_Phrases_AP@0.5IOU/4'], 0)
self.assertAlmostEqual(metrics['VRDMetric_Phrases_Recall@50@0.5IOU'], 0.25)
self.assertAlmostEqual(metrics['VRDMetric_Phrases_Recall@100@0.5IOU'], 0.25)
self.vrd_eval.clear()
self.assertFalse(self.vrd_eval._image_ids)
class VRDDetectionEvaluationTest(tf.test.TestCase):
def setUp(self):
self.vrd_eval = vrd_evaluation._VRDDetectionEvaluation(
matching_iou_threshold=0.5)
image_key1 = 'img1'
groundtruth_box_tuples1 = np.array(
[([0, 0, 1, 1], [1, 1, 2, 2]), ([0, 0, 1, 1], [1, 2, 2, 3])],
dtype=vrd_evaluation.vrd_box_data_type)
groundtruth_class_tuples1 = np.array(
[(1, 2, 3), (1, 4, 3)], dtype=vrd_evaluation.label_data_type)
self.vrd_eval.add_single_ground_truth_image_info(
image_key1, groundtruth_box_tuples1, groundtruth_class_tuples1)
image_key2 = 'img2'
groundtruth_box_tuples2 = np.array(
[([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type)
groundtruth_class_tuples2 = np.array(
[(1, 4, 3)], dtype=vrd_evaluation.label_data_type)
self.vrd_eval.add_single_ground_truth_image_info(
image_key2, groundtruth_box_tuples2, groundtruth_class_tuples2)
image_key3 = 'img3'
groundtruth_box_tuples3 = np.array(
[([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type)
groundtruth_class_tuples3 = np.array(
[(1, 2, 4)], dtype=vrd_evaluation.label_data_type)
self.vrd_eval.add_single_ground_truth_image_info(
image_key3, groundtruth_box_tuples3, groundtruth_class_tuples3)
image_key = 'img1'
detected_box_tuples = np.array(
[([0, 0.3, 1, 1], [1.1, 1, 2, 2]), ([0, 0, 1, 1], [1, 1, 2, 2])],
dtype=vrd_evaluation.vrd_box_data_type)
detected_class_tuples = np.array(
[(1, 2, 3), (1, 2, 3)], dtype=vrd_evaluation.label_data_type)
detected_scores = np.array([0.7, 0.8], dtype=float)
self.vrd_eval.add_single_detected_image_info(
image_key, detected_box_tuples, detected_scores, detected_class_tuples)
metrics = self.vrd_eval.evaluate()
expected_weighted_average_precision = 0.25
expected_mean_average_precision = 0.16666666666666
expected_precision = np.array([1., 0.5], dtype=float)
expected_recall = np.array([0.25, 0.25], dtype=float)
expected_recall_50 = 0.25
expected_recall_100 = 0.25
expected_median_rank_50 = 0
expected_median_rank_100 = 0
self.assertAlmostEqual(expected_weighted_average_precision,
metrics.weighted_average_precision)
self.assertAlmostEqual(expected_mean_average_precision,
metrics.mean_average_precision)
self.assertAlmostEqual(expected_mean_average_precision,
metrics.mean_average_precision)
self.assertAllClose(expected_precision, metrics.precisions)
self.assertAllClose(expected_recall, metrics.recalls)
self.assertAlmostEqual(expected_recall_50, metrics.recall_50)
self.assertAlmostEqual(expected_recall_100, metrics.recall_100)
self.assertAlmostEqual(expected_median_rank_50, metrics.median_rank_50)
self.assertAlmostEqual(expected_median_rank_100, metrics.median_rank_100)
if __name__ == '__main__':
tf.test.main()