You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

72 lines
1.8 KiB

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import warnings
from rasa_nlu.training_data import load_data
from rasa_nlu import config
from rasa_nlu.model import Trainer
import rasa_core
from rasa_core.agent import Agent
from rasa_core.policies.keras_policy import KerasPolicy
from rasa_core.policies.memoization import MemoizationPolicy
def train_nlu():
training_data = load_data('data/nlu-data.md')
trainer = Trainer(config.load("nlu-config.yml"))
trainer.train(training_data)
model_directory = trainer.persist('models/nlu/', fixed_model_name="current")
return model_directory
def train_dialogue(
domain_file="domain.yml",
model_path="models/dialogue",
training_data_file="data/stories.md"
):
agent = Agent(
domain_file,
policies=[MemoizationPolicy(max_history=3), KerasPolicy()]
)
training_data = agent.load_data(training_data_file)
agent.train(
training_data,
epochs=400,
batch_size=100,
validation_split=0.2
)
agent.persist(model_path)
return agent
def train_all():
model_directory = train_nlu()
agent = train_dialogue()
return [model_directory, agent]
if __name__ == '__main__':
warnings.filterwarnings(action='ignore', category=DeprecationWarning)
rasa_core.utils.configure_colored_logging(loglevel="INFO")
parser = argparse.ArgumentParser(
description='starts the bot training')
parser.add_argument(
'task',
choices=["train-nlu", "train-dialogue", "train-all"],
help="what the bot should do?")
task = parser.parse_args().task
# decide what to do based on first parameter of the script
if task == "train-nlu":
train_nlu()
elif task == "train-dialogue":
train_dialogue()
elif task == "train-all":
train_all()