You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

203 lines
8.1 KiB

#!/usr/bin/python3
import numpy as np
import os
import sys
import tensorflow as tf
import cv2
from distutils.version import StrictVersion
import socket
from utils import label_map_util
from utils import visualization_utils as vis_util
import psutil
import json
import base64
from PIL import Image
from io import BytesIO
import psutil
switch = 1
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
import time
from object_detection.utils import ops as utils_ops
if StrictVersion(tf.__version__) < StrictVersion('1.12.0'):
raise ImportError('Please upgrade your TensorFlow installation to v1.12.*.')
# What model to download.
#MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' #not even worth trying
MODEL_NAME="ssd_inception_v2_coco_11_06_2017" # not bad and fast
MODEL_NAME="rfcn_resnet101_coco_11_06_2017" # WORKS BEST BUT takes 4 times longer per image
#MODEL_NAME = "faster_rcnn_resnet101_coco_11_06_2017" # too slow
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('object_detection/data', 'mscoco_label_map.pbtxt')
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'object_detection/test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(3, 6) ]
# Size, in inches, of the output images.
sess = 0
switch = 1
data = {"gpu_temp":"10C","gpu_load":"15%","cpu_temp":"47C","cpu_load":"15%","mem_temp":"NaN","mem_load":"17%","fan_speed":"10000RPM"}
def get_temps():
global data
temps = psutil.sensors_temperatures()
data["cpu_temp"] = str(int(temps["dell_smm"][0][1]))+"°C"
data["cpu_load"] = str(psutil.cpu_percent())+"%"
data["mem_load"] = str(dict(psutil.virtual_memory()._asdict())["percent"])+"%"
data["fan_speed"] = str(psutil.sensors_fans()["dell_smm"][0][1])+"RPM"
def run_inference_for_single_image(image, graph):
global switch
global sess
with graph.as_default():
if(switch):
sess = tf.Session()
switch = 0
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[1], image.shape[2])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: image})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.int64)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
cut=[-175,-1,-175,-1]
cut_send = [0,0,0,0]
a = 1
img_counter = 0
socket_switch = True
cam = cv2.VideoCapture(0)
with detection_graph.as_default():
sess = tf.Session()
switch = 0
get_temps()
while 1:
if(True):
try:
ret,image = cam.read()
image_np = image[cut[0]:cut[1],cut[2]:cut[3]]
#image_np = image_np[int(r[1]):int(r[1]+r[3]),int(r[0]):int(r[0]+r[2])]
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
t1 = time.time()
# Actual detection.
output_dict = run_inference_for_single_image(image_np_expanded, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
image[cut[0]:cut[1],cut[2]:cut[3]] = image_np
send_image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
cv2.imshow("Cam",image)
cv2.imshow("Cut",image_np)
if socket_switch:
try:
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client_socket.connect(('127.0.0.1', 8485))
connection = client_socket.makefile('wb')
socket_switch = False
except:
socket_switch=True
continue
try:
crop_img = send_image.copy(order='C')
crop_img = Image.fromarray(crop_img,"RGB")
buffered = BytesIO()
crop_img.save(buffered, format="JPEG")
img = base64.b64encode(buffered.getvalue()).decode("ascii")
client_socket.sendall(json.dumps({"image_full":img,"image_sizes":{"x":cut_send[2],"y":cut_send[0],"width":cut_send[3],"height":cut_send[1]},"load":data}).encode('gbk')+b"\n")
img_counter += 1
except:
socket_switch=True
if img_counter % 10 ==0:
get_temps()
t2 = time.time()
print("time taken for {}".format(t2-t1))
ex_c = [27, ord("q"), ord("Q")]
if cv2.waitKey(1) & 0xFF in ex_c:
break
except KeyboardInterrupt:
if not socket_switch:
client_socket.sendall(b"Bye\n")
cam.release()
exit(0)
cv2.destroyAllWindows()
cam.release()