|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for object_detection.utils.per_image_vrd_evaluation."""
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from object_detection.utils import per_image_vrd_evaluation
|
|
|
|
|
|
class SingleClassPerImageVrdEvaluationTest(tf.test.TestCase):
|
|
|
|
def setUp(self):
|
|
matching_iou_threshold = 0.5
|
|
self.eval = per_image_vrd_evaluation.PerImageVRDEvaluation(
|
|
matching_iou_threshold)
|
|
box_data_type = np.dtype([('subject', 'f4', (4,)), ('object', 'f4', (4,))])
|
|
|
|
self.detected_box_tuples = np.array(
|
|
[([0, 0, 1.1, 1], [1, 1, 2, 2]), ([0, 0, 1, 1], [1, 1, 2, 2]),
|
|
([1, 1, 2, 2], [0, 0, 1.1, 1])],
|
|
dtype=box_data_type)
|
|
self.detected_scores = np.array([0.8, 0.2, 0.1], dtype=float)
|
|
self.groundtruth_box_tuples = np.array(
|
|
[([0, 0, 1, 1], [1, 1, 2, 2])], dtype=box_data_type)
|
|
|
|
def test_tp_fp_eval(self):
|
|
tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
|
|
self.detected_box_tuples, self.groundtruth_box_tuples)
|
|
expected_tp_fp_labels = np.array([True, False, False], dtype=bool)
|
|
self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
|
|
|
|
def test_tp_fp_eval_empty_gt(self):
|
|
box_data_type = np.dtype([('subject', 'f4', (4,)), ('object', 'f4', (4,))])
|
|
|
|
tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
|
|
self.detected_box_tuples, np.array([], dtype=box_data_type))
|
|
expected_tp_fp_labels = np.array([False, False, False], dtype=bool)
|
|
self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
|
|
|
|
|
|
class MultiClassPerImageVrdEvaluationTest(tf.test.TestCase):
|
|
|
|
def setUp(self):
|
|
matching_iou_threshold = 0.5
|
|
self.eval = per_image_vrd_evaluation.PerImageVRDEvaluation(
|
|
matching_iou_threshold)
|
|
box_data_type = np.dtype([('subject', 'f4', (4,)), ('object', 'f4', (4,))])
|
|
label_data_type = np.dtype([('subject', 'i4'), ('object', 'i4'),
|
|
('relation', 'i4')])
|
|
|
|
self.detected_box_tuples = np.array(
|
|
[([0, 0, 1, 1], [1, 1, 2, 2]), ([0, 0, 1.1, 1], [1, 1, 2, 2]),
|
|
([1, 1, 2, 2], [0, 0, 1.1, 1]), ([0, 0, 1, 1], [3, 4, 5, 6])],
|
|
dtype=box_data_type)
|
|
self.detected_class_tuples = np.array(
|
|
[(1, 2, 3), (1, 2, 3), (1, 2, 3), (1, 4, 5)], dtype=label_data_type)
|
|
self.detected_scores = np.array([0.2, 0.8, 0.1, 0.5], dtype=float)
|
|
|
|
self.groundtruth_box_tuples = np.array(
|
|
[([0, 0, 1, 1], [1, 1, 2, 2]), ([1, 1, 2, 2], [0, 0, 1.1, 1]),
|
|
([0, 0, 1, 1], [3, 4, 5, 5.5])],
|
|
dtype=box_data_type)
|
|
self.groundtruth_class_tuples = np.array(
|
|
[(1, 2, 3), (1, 7, 3), (1, 4, 5)], dtype=label_data_type)
|
|
|
|
def test_tp_fp_eval(self):
|
|
scores, tp_fp_labels, mapping = self.eval.compute_detection_tp_fp(
|
|
self.detected_box_tuples, self.detected_scores,
|
|
self.detected_class_tuples, self.groundtruth_box_tuples,
|
|
self.groundtruth_class_tuples)
|
|
|
|
expected_scores = np.array([0.8, 0.5, 0.2, 0.1], dtype=float)
|
|
expected_tp_fp_labels = np.array([True, True, False, False], dtype=bool)
|
|
expected_mapping = np.array([1, 3, 0, 2])
|
|
|
|
self.assertTrue(np.allclose(expected_scores, scores))
|
|
self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
|
|
self.assertTrue(np.allclose(expected_mapping, mapping))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|