|
from flask import Flask, request
|
|
from flask_restful import Resource, Api, abort
|
|
|
|
import json
|
|
import io
|
|
import base64
|
|
from PIL import Image
|
|
import sys
|
|
import datetime
|
|
import cv2
|
|
|
|
if sys.platform == "win32":
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
import pickle
|
|
|
|
sys.path.insert(0, r'C:\Users\Tednokent01\Downloads\MyCity\traffic_analyzer')
|
|
from utils import label_map_util
|
|
|
|
from utils import visualization_utils as vis_util
|
|
|
|
app = Flask(__name__)
|
|
api = Api(app)
|
|
|
|
with open("modules/databases/complaints.json","r") as f:
|
|
complaints = json.load(f)
|
|
|
|
if sys.platform == "win32":
|
|
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
|
PATH_TO_CKPT = 'modules/trainedModels/ssd_mobilenet_RoadDamageDetector.pb'
|
|
|
|
# List of the strings that is used to add correct label for each box.
|
|
PATH_TO_LABELS = 'modules/trainedModels/crack_label_map.pbtxt'
|
|
|
|
NUM_CLASSES = 8
|
|
|
|
detection_graph = tf.Graph()
|
|
with detection_graph.as_default():
|
|
od_graph_def = tf.GraphDef()
|
|
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
|
|
serialized_graph = fid.read()
|
|
od_graph_def.ParseFromString(serialized_graph)
|
|
tf.import_graph_def(od_graph_def, name='')
|
|
|
|
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
|
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
|
|
category_index = label_map_util.create_category_index(categories)
|
|
|
|
def load_image_into_numpy_array(image):
|
|
(im_width, im_height) = image.size
|
|
return np.array(image.getdata()).reshape(
|
|
(im_height, im_width, 3)).astype(np.uint8)
|
|
|
|
def process_img(img_base64):
|
|
|
|
if sys.platform == "win32":
|
|
img = Image.open(io.BytesIO(base64.b64decode(img_base64)))
|
|
with detection_graph.as_default():
|
|
with tf.Session(graph=detection_graph) as sess:
|
|
# Definite input and output Tensors for detection_graph
|
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
|
# Each box represents a part of the image where a particular object was detected.
|
|
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
|
# Each score represent how level of confidence for each of the objects.
|
|
# Score is shown on the result image, together with the class label.
|
|
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
|
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
|
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
|
# the array based representation of the image will be used later in order to prepare the
|
|
# result image with boxes and labels on it.
|
|
image_np = load_image_into_numpy_array(img)
|
|
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
|
image_np_expanded = np.expand_dims(image_np, axis=0)
|
|
# Actual detection.
|
|
(boxes, scores, classes, num) = sess.run(
|
|
[detection_boxes, detection_scores, detection_classes, num_detections],
|
|
feed_dict={image_tensor: image_np_expanded})
|
|
# Visualization of the results of a detection.
|
|
vis_util.visualize_boxes_and_labels_on_image_array(
|
|
image_np,
|
|
np.squeeze(boxes),
|
|
np.squeeze(classes).astype(np.int32),
|
|
np.squeeze(scores),
|
|
category_index,
|
|
min_score_thresh=0.3,
|
|
use_normalized_coordinates=True,
|
|
line_thickness=8)
|
|
cv2.imwrite('cv222.png', image_np)
|
|
|
|
output_dict = {'detection_classes': classes, 'detection_scores': scores[0]}
|
|
defects = []
|
|
for i in output_dict['detection_classes']:
|
|
index = np.where(output_dict['detection_classes'] == i)[0][0]
|
|
score = output_dict['detection_scores'][index]
|
|
if score > 0.3:
|
|
defects.append(score)
|
|
|
|
priority = sum(defects) // 0.5
|
|
if priority > 10:
|
|
priority = 10
|
|
|
|
return base64.b64encode(pickle.dumps(image_np)).decode('ascii'),priority,defects
|
|
|
|
return img_base64, 7,["unprocessed"]
|
|
|
|
class Complaint(Resource):
|
|
def post(self):
|
|
complaint = {}
|
|
args = request.form.to_dict()
|
|
|
|
complaint = args
|
|
|
|
complaint["response"] = {"status":False}
|
|
|
|
img_process,priority,tags = process_img(complaint["img"])
|
|
|
|
complaint["img"] = img_process
|
|
complaint["response"]["priority"] = str(priority)
|
|
complaint["tags"] = list(map(str, tags))
|
|
complaint["datetime"] = datetime.datetime.now().strftime('%b-%d-%I:%M %p-%G')
|
|
|
|
try:
|
|
complaints[complaint["id"]].append(complaint)
|
|
except KeyError:
|
|
complaints[complaint["id"]] = [complaint]
|
|
|
|
del complaints[complaint["id"]][-1]["id"]
|
|
with open('modules/databases/complaints.json', 'w') as complaints_file:
|
|
json.dump(complaints, complaints_file, indent=4)
|
|
|
|
|
|
class Complaints(Resource):
|
|
def post(self):
|
|
id = request.form["id"]
|
|
return complaints[id]
|
|
|
|
|
|
class ComplaintsAdmin(Resource):
|
|
|
|
def get(self): return complaints
|