You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

174 lines
7.9 KiB

from flask import Flask, request, Response
from flask_restful import Resource, Api
import os
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
from object_detection.utils import ops as utils_ops
from PIL import Image
import base64
import io
import json
import re
import tensorflow as tf
import sys,getpass
import numpy as np
from flask import Flask, send_from_directory
from flask_restful import Api
from flask_cors import CORS, cross_origin
app = Flask(__name__)
api = Api(app)
app.config['SECRET_KEY'] = 'the quick brown fox jumps over the lazy dog'
app.config['CORS_HEADERS'] = 'Content-Type'
cors = CORS(app, resources={r"/foo": {"origins": "*"}})
switches = {"coco":1, "damage":1}
COCO_MODEL_NAME = "rfcn_resnet101_coco_2018_01_28"
PATH_TO_FROZEN_COCO_GRAPH = 'modules/'+COCO_MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_FROZEN_DAMAGE_GRAPH = 'modules/trainedModels/ssd_mobilenet_RoadDamageDetector.pb'
linux_def = {"detection_boxes":[(106, 188, 480, 452)],"detection_scores":[0.99],"detection_classes":[1]}
detection_graph_coco = None
detection_graph_damage = None
if getpass.getuser() == "tedankara":
detection_graph_coco = tf.Graph()
detection_graph_damage = tf.Graph()
with detection_graph_coco.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_FROZEN_COCO_GRAPH, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
with detection_graph_damage.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_FROZEN_DAMAGE_GRAPH, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
def decode_base64(data, altchars=b'+/'):
"""Decode base64, padding being optional.
:param data: Base64 data as an ASCII byte string
:returns: The decoded byte string.
"""
data = re.sub(rb'[^a-zA-Z0-9%s]+' % altchars, b'', bytes(data,"utf-8")) # normalize
missing_padding = len(data) % 4
if missing_padding:
data += b'='* (4 - missing_padding)
return base64.b64decode(data, altchars)
def run_inference_for_single_image(image, graph,type):
global switches
global sess_coco
global sess_damage
if not getpass.getuser() == "tedankara":
return linux_def
with graph.as_default():
if(switches[type]):
if type == "coco":
sess_coco = tf.Session()
elif type == "damage":
sess_damage = tf.Session()
switches[type] = 0
if type == "coco":
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[1], image.shape[2])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess_coco.run(tensor_dict,
feed_dict={image_tensor: image})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.int64)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
elif type=="damage":
image_tensor = graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = graph.get_tensor_by_name('detection_scores:0')
detection_classes = graph.get_tensor_by_name('detection_classes:0')
num_detections = graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num) = sess_damage.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image})
output_dict = {'detection_classes': np.squeeze(classes).astype(np.int32), 'detection_scores': np.squeeze(scores),'detection_boxes': np.squeeze(boxes)}
return output_dict
class Process(Resource):
def post(self):
base64_img = request.form['img']
image = Image.open(io.BytesIO(decode_base64(base64_img)))
type = request.form["type"]
image_np = load_image_into_numpy_array(image)
image_np_expanded = np.expand_dims(image_np, axis=0)
if type == "coco":
output_dict = run_inference_for_single_image(image_np_expanded, detection_graph_coco,type)
elif type == "damage":
output_dict = run_inference_for_single_image(image_np_expanded, detection_graph_damage,type)
if getpass.getuser() == "tedankara":
output_dict["detection_boxes"] = output_dict["detection_boxes"].tolist()
output_dict["detection_scores"] = output_dict["detection_scores"].tolist()
output_dict["detection_classes"] = output_dict["detection_classes"].tolist()
return output_dict
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
if __name__ == '__main__':
context = ('encryption/mycity.crt', 'encryption/mycity-decrypted.key')
api.add_resource(Process, '/ai', '/ai/')
app.run(host='0.0.0.0', port=5001, ssl_context=context, debug=False)