You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

148 lines
6.5 KiB

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for calibration_builder."""
import numpy as np
from scipy import interpolate
import tensorflow as tf
from object_detection.builders import calibration_builder
from object_detection.protos import calibration_pb2
class CalibrationBuilderTest(tf.test.TestCase):
def test_tf_linear_interp1d_map(self):
"""Tests TF linear interpolation mapping to a single number."""
with self.test_session() as sess:
tf_x = tf.constant([0., 0.5, 1.])
tf_y = tf.constant([0.5, 0.5, 0.5])
new_x = tf.constant([0., 0.25, 0.5, 0.75, 1.])
tf_map_outputs = calibration_builder._tf_linear_interp1d(
new_x, tf_x, tf_y)
tf_map_outputs_np = sess.run([tf_map_outputs])
self.assertAllClose(tf_map_outputs_np, [[0.5, 0.5, 0.5, 0.5, 0.5]])
def test_tf_linear_interp1d_interpolate(self):
"""Tests TF 1d linear interpolation not mapping to a single number."""
with self.test_session() as sess:
tf_x = tf.constant([0., 0.5, 1.])
tf_y = tf.constant([0.6, 0.7, 1.0])
new_x = tf.constant([0., 0.25, 0.5, 0.75, 1.])
tf_interpolate_outputs = calibration_builder._tf_linear_interp1d(
new_x, tf_x, tf_y)
tf_interpolate_outputs_np = sess.run([tf_interpolate_outputs])
self.assertAllClose(tf_interpolate_outputs_np, [[0.6, 0.65, 0.7, 0.85, 1.]])
@staticmethod
def _get_scipy_interp1d(new_x, x, y):
"""Helper performing 1d linear interpolation using SciPy."""
interpolation1d_fn = interpolate.interp1d(x, y)
return interpolation1d_fn(new_x)
def _get_tf_interp1d(self, new_x, x, y):
"""Helper performing 1d linear interpolation using Tensorflow."""
with self.test_session() as sess:
tf_interp_outputs = calibration_builder._tf_linear_interp1d(
tf.convert_to_tensor(new_x, dtype=tf.float32),
tf.convert_to_tensor(x, dtype=tf.float32),
tf.convert_to_tensor(y, dtype=tf.float32))
np_tf_interp_outputs = sess.run(tf_interp_outputs)
return np_tf_interp_outputs
def test_tf_linear_interp1d_against_scipy_map(self):
"""Tests parity of TF linear interpolation with SciPy for simple mapping."""
length = 10
np_x = np.linspace(0, 1, length)
# Mapping all numbers to 0.5
np_y_map = np.repeat(0.5, length)
# Scipy and TF interpolations
test_data_np = np.linspace(0, 1, length * 10)
scipy_map_outputs = self._get_scipy_interp1d(test_data_np, np_x, np_y_map)
np_tf_map_outputs = self._get_tf_interp1d(test_data_np, np_x, np_y_map)
self.assertAllClose(scipy_map_outputs, np_tf_map_outputs)
def test_tf_linear_interp1d_against_scipy_interpolate(self):
"""Tests parity of TF linear interpolation with SciPy."""
length = 10
np_x = np.linspace(0, 1, length)
# Requires interpolation over 0.5 to 1 domain
np_y_interp = np.linspace(0.5, 1, length)
# Scipy interpolation for comparison
test_data_np = np.linspace(0, 1, length * 10)
scipy_interp_outputs = self._get_scipy_interp1d(test_data_np, np_x,
np_y_interp)
np_tf_interp_outputs = self._get_tf_interp1d(test_data_np, np_x,
np_y_interp)
self.assertAllClose(scipy_interp_outputs, np_tf_interp_outputs)
@staticmethod
def _add_function_approximation_to_calibration_proto(calibration_proto,
x_array,
y_array,
class_label):
"""Adds a function approximation to calibration proto for a class label."""
# Per-class calibration.
if class_label:
label_function_approximation = (calibration_proto
.label_function_approximations
.label_xy_pairs_map[class_label])
# Class-agnostic calibration.
else:
label_function_approximation = (calibration_proto
.function_approximation
.x_y_pairs)
for x, y in zip(x_array, y_array):
x_y_pair_message = label_function_approximation.x_y_pair.add()
x_y_pair_message.x = x
x_y_pair_message.y = y
def test_class_agnostic_function_approximation(self):
"""Ensures that calibration appropriate values, regardless of class."""
# Generate fake calibration proto. For this interpolation, any input on
# [0.0, 0.5] should be divided by 2 and any input on (0.5, 1.0] should have
# 0.25 subtracted from it.
class_agnostic_x = np.asarray([0.0, 0.5, 1.0])
class_agnostic_y = np.asarray([0.0, 0.25, 0.75])
calibration_config = calibration_pb2.CalibrationConfig()
self._add_function_approximation_to_calibration_proto(calibration_config,
class_agnostic_x,
class_agnostic_y,
class_label=None)
od_graph = tf.Graph()
with self.test_session(graph=od_graph) as sess:
calibration_fn = calibration_builder.build(calibration_config)
# batch_size = 2, num_classes = 2, num_anchors = 2.
class_predictions_with_background = tf.constant(
[[[0.1, 0.2, 0.3],
[0.4, 0.5, 0.0]],
[[0.6, 0.7, 0.8],
[0.9, 1.0, 1.0]]], dtype=tf.float32)
# Everything should map to 0.5 if classes are ignored.
calibrated_scores = calibration_fn(class_predictions_with_background)
calibrated_scores_np = sess.run(calibrated_scores)
self.assertAllClose(calibrated_scores_np, [[[0.05, 0.1, 0.15],
[0.2, 0.25, 0.0]],
[[0.35, 0.45, 0.55],
[0.65, 0.75, 0.75]]])
if __name__ == '__main__':
tf.test.main()