# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Tests for losses_builder."""
|
|
|
|
import tensorflow as tf
|
|
|
|
from google.protobuf import text_format
|
|
from object_detection.builders import losses_builder
|
|
from object_detection.core import losses
|
|
from object_detection.protos import losses_pb2
|
|
from object_detection.utils import ops
|
|
|
|
|
|
class LocalizationLossBuilderTest(tf.test.TestCase):
|
|
|
|
def test_build_weighted_l2_localization_loss(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
_, localization_loss, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(localization_loss,
|
|
losses.WeightedL2LocalizationLoss))
|
|
|
|
def test_build_weighted_smooth_l1_localization_loss_default_delta(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_smooth_l1 {
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
_, localization_loss, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(localization_loss,
|
|
losses.WeightedSmoothL1LocalizationLoss))
|
|
self.assertAlmostEqual(localization_loss._delta, 1.0)
|
|
|
|
def test_build_weighted_smooth_l1_localization_loss_non_default_delta(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_smooth_l1 {
|
|
delta: 0.1
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
_, localization_loss, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(localization_loss,
|
|
losses.WeightedSmoothL1LocalizationLoss))
|
|
self.assertAlmostEqual(localization_loss._delta, 0.1)
|
|
|
|
def test_build_weighted_iou_localization_loss(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_iou {
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
_, localization_loss, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(localization_loss,
|
|
losses.WeightedIOULocalizationLoss))
|
|
|
|
def test_anchorwise_output(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_smooth_l1 {
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
_, localization_loss, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(localization_loss,
|
|
losses.WeightedSmoothL1LocalizationLoss))
|
|
predictions = tf.constant([[[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]]])
|
|
targets = tf.constant([[[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]]])
|
|
weights = tf.constant([[1.0, 1.0]])
|
|
loss = localization_loss(predictions, targets, weights=weights)
|
|
self.assertEqual(loss.shape, [1, 2])
|
|
|
|
def test_raise_error_on_empty_localization_config(self):
|
|
losses_text_proto = """
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
with self.assertRaises(ValueError):
|
|
losses_builder._build_localization_loss(losses_proto)
|
|
|
|
|
|
class ClassificationLossBuilderTest(tf.test.TestCase):
|
|
|
|
def test_build_weighted_sigmoid_classification_loss(self):
|
|
losses_text_proto = """
|
|
classification_loss {
|
|
weighted_sigmoid {
|
|
}
|
|
}
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(classification_loss,
|
|
losses.WeightedSigmoidClassificationLoss))
|
|
|
|
def test_build_weighted_sigmoid_focal_classification_loss(self):
|
|
losses_text_proto = """
|
|
classification_loss {
|
|
weighted_sigmoid_focal {
|
|
}
|
|
}
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(classification_loss,
|
|
losses.SigmoidFocalClassificationLoss))
|
|
self.assertAlmostEqual(classification_loss._alpha, None)
|
|
self.assertAlmostEqual(classification_loss._gamma, 2.0)
|
|
|
|
def test_build_weighted_sigmoid_focal_loss_non_default(self):
|
|
losses_text_proto = """
|
|
classification_loss {
|
|
weighted_sigmoid_focal {
|
|
alpha: 0.25
|
|
gamma: 3.0
|
|
}
|
|
}
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(classification_loss,
|
|
losses.SigmoidFocalClassificationLoss))
|
|
self.assertAlmostEqual(classification_loss._alpha, 0.25)
|
|
self.assertAlmostEqual(classification_loss._gamma, 3.0)
|
|
|
|
def test_build_weighted_softmax_classification_loss(self):
|
|
losses_text_proto = """
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(classification_loss,
|
|
losses.WeightedSoftmaxClassificationLoss))
|
|
|
|
def test_build_weighted_logits_softmax_classification_loss(self):
|
|
losses_text_proto = """
|
|
classification_loss {
|
|
weighted_logits_softmax {
|
|
}
|
|
}
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(
|
|
isinstance(classification_loss,
|
|
losses.WeightedSoftmaxClassificationAgainstLogitsLoss))
|
|
|
|
def test_build_weighted_softmax_classification_loss_with_logit_scale(self):
|
|
losses_text_proto = """
|
|
classification_loss {
|
|
weighted_softmax {
|
|
logit_scale: 2.0
|
|
}
|
|
}
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(classification_loss,
|
|
losses.WeightedSoftmaxClassificationLoss))
|
|
|
|
def test_build_bootstrapped_sigmoid_classification_loss(self):
|
|
losses_text_proto = """
|
|
classification_loss {
|
|
bootstrapped_sigmoid {
|
|
alpha: 0.5
|
|
}
|
|
}
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(classification_loss,
|
|
losses.BootstrappedSigmoidClassificationLoss))
|
|
|
|
def test_anchorwise_output(self):
|
|
losses_text_proto = """
|
|
classification_loss {
|
|
weighted_sigmoid {
|
|
anchorwise_output: true
|
|
}
|
|
}
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(classification_loss,
|
|
losses.WeightedSigmoidClassificationLoss))
|
|
predictions = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.5, 0.5]]])
|
|
targets = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]])
|
|
weights = tf.constant([[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]])
|
|
loss = classification_loss(predictions, targets, weights=weights)
|
|
self.assertEqual(loss.shape, [1, 2, 3])
|
|
|
|
def test_raise_error_on_empty_config(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
with self.assertRaises(ValueError):
|
|
losses_builder.build(losses_proto)
|
|
|
|
|
|
class HardExampleMinerBuilderTest(tf.test.TestCase):
|
|
|
|
def test_do_not_build_hard_example_miner_by_default(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
_, _, _, _, hard_example_miner, _, _ = losses_builder.build(losses_proto)
|
|
self.assertEqual(hard_example_miner, None)
|
|
|
|
def test_build_hard_example_miner_for_classification_loss(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
hard_example_miner {
|
|
loss_type: CLASSIFICATION
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
_, _, _, _, hard_example_miner, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(hard_example_miner, losses.HardExampleMiner))
|
|
self.assertEqual(hard_example_miner._loss_type, 'cls')
|
|
|
|
def test_build_hard_example_miner_for_localization_loss(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
hard_example_miner {
|
|
loss_type: LOCALIZATION
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
_, _, _, _, hard_example_miner, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(hard_example_miner, losses.HardExampleMiner))
|
|
self.assertEqual(hard_example_miner._loss_type, 'loc')
|
|
|
|
def test_build_hard_example_miner_with_non_default_values(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
hard_example_miner {
|
|
num_hard_examples: 32
|
|
iou_threshold: 0.5
|
|
loss_type: LOCALIZATION
|
|
max_negatives_per_positive: 10
|
|
min_negatives_per_image: 3
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
_, _, _, _, hard_example_miner, _, _ = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(hard_example_miner, losses.HardExampleMiner))
|
|
self.assertEqual(hard_example_miner._num_hard_examples, 32)
|
|
self.assertAlmostEqual(hard_example_miner._iou_threshold, 0.5)
|
|
self.assertEqual(hard_example_miner._max_negatives_per_positive, 10)
|
|
self.assertEqual(hard_example_miner._min_negatives_per_image, 3)
|
|
|
|
|
|
class LossBuilderTest(tf.test.TestCase):
|
|
|
|
def test_build_all_loss_parameters(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
hard_example_miner {
|
|
}
|
|
classification_weight: 0.8
|
|
localization_weight: 0.2
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
(classification_loss, localization_loss, classification_weight,
|
|
localization_weight, hard_example_miner, _,
|
|
_) = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(hard_example_miner, losses.HardExampleMiner))
|
|
self.assertTrue(isinstance(classification_loss,
|
|
losses.WeightedSoftmaxClassificationLoss))
|
|
self.assertTrue(isinstance(localization_loss,
|
|
losses.WeightedL2LocalizationLoss))
|
|
self.assertAlmostEqual(classification_weight, 0.8)
|
|
self.assertAlmostEqual(localization_weight, 0.2)
|
|
|
|
def test_build_expected_sampling(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
hard_example_miner {
|
|
}
|
|
classification_weight: 0.8
|
|
localization_weight: 0.2
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
(classification_loss, localization_loss, classification_weight,
|
|
localization_weight, hard_example_miner, _,
|
|
_) = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(hard_example_miner, losses.HardExampleMiner))
|
|
self.assertTrue(
|
|
isinstance(classification_loss,
|
|
losses.WeightedSoftmaxClassificationLoss))
|
|
self.assertTrue(
|
|
isinstance(localization_loss, losses.WeightedL2LocalizationLoss))
|
|
self.assertAlmostEqual(classification_weight, 0.8)
|
|
self.assertAlmostEqual(localization_weight, 0.2)
|
|
|
|
|
|
def test_build_reweighting_unmatched_anchors(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_softmax {
|
|
}
|
|
}
|
|
hard_example_miner {
|
|
}
|
|
classification_weight: 0.8
|
|
localization_weight: 0.2
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
(classification_loss, localization_loss, classification_weight,
|
|
localization_weight, hard_example_miner, _,
|
|
_) = losses_builder.build(losses_proto)
|
|
self.assertTrue(isinstance(hard_example_miner, losses.HardExampleMiner))
|
|
self.assertTrue(
|
|
isinstance(classification_loss,
|
|
losses.WeightedSoftmaxClassificationLoss))
|
|
self.assertTrue(
|
|
isinstance(localization_loss, losses.WeightedL2LocalizationLoss))
|
|
self.assertAlmostEqual(classification_weight, 0.8)
|
|
self.assertAlmostEqual(localization_weight, 0.2)
|
|
|
|
def test_raise_error_when_both_focal_loss_and_hard_example_miner(self):
|
|
losses_text_proto = """
|
|
localization_loss {
|
|
weighted_l2 {
|
|
}
|
|
}
|
|
classification_loss {
|
|
weighted_sigmoid_focal {
|
|
}
|
|
}
|
|
hard_example_miner {
|
|
}
|
|
classification_weight: 0.8
|
|
localization_weight: 0.2
|
|
"""
|
|
losses_proto = losses_pb2.Loss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
with self.assertRaises(ValueError):
|
|
losses_builder.build(losses_proto)
|
|
|
|
|
|
class FasterRcnnClassificationLossBuilderTest(tf.test.TestCase):
|
|
|
|
def test_build_sigmoid_loss(self):
|
|
losses_text_proto = """
|
|
weighted_sigmoid {
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.ClassificationLoss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss = losses_builder.build_faster_rcnn_classification_loss(
|
|
losses_proto)
|
|
self.assertTrue(isinstance(classification_loss,
|
|
losses.WeightedSigmoidClassificationLoss))
|
|
|
|
def test_build_softmax_loss(self):
|
|
losses_text_proto = """
|
|
weighted_softmax {
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.ClassificationLoss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss = losses_builder.build_faster_rcnn_classification_loss(
|
|
losses_proto)
|
|
self.assertTrue(isinstance(classification_loss,
|
|
losses.WeightedSoftmaxClassificationLoss))
|
|
|
|
def test_build_logits_softmax_loss(self):
|
|
losses_text_proto = """
|
|
weighted_logits_softmax {
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.ClassificationLoss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss = losses_builder.build_faster_rcnn_classification_loss(
|
|
losses_proto)
|
|
self.assertTrue(
|
|
isinstance(classification_loss,
|
|
losses.WeightedSoftmaxClassificationAgainstLogitsLoss))
|
|
|
|
def test_build_sigmoid_focal_loss(self):
|
|
losses_text_proto = """
|
|
weighted_sigmoid_focal {
|
|
}
|
|
"""
|
|
losses_proto = losses_pb2.ClassificationLoss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss = losses_builder.build_faster_rcnn_classification_loss(
|
|
losses_proto)
|
|
self.assertTrue(
|
|
isinstance(classification_loss,
|
|
losses.SigmoidFocalClassificationLoss))
|
|
|
|
def test_build_softmax_loss_by_default(self):
|
|
losses_text_proto = """
|
|
"""
|
|
losses_proto = losses_pb2.ClassificationLoss()
|
|
text_format.Merge(losses_text_proto, losses_proto)
|
|
classification_loss = losses_builder.build_faster_rcnn_classification_loss(
|
|
losses_proto)
|
|
self.assertTrue(isinstance(classification_loss,
|
|
losses.WeightedSoftmaxClassificationLoss))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|