|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Binary to run train and evaluation on object detection model."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from absl import flags
|
|
|
|
import tensorflow as tf
|
|
|
|
from object_detection import model_hparams
|
|
from object_detection import model_lib
|
|
|
|
flags.DEFINE_string(
|
|
'model_dir', None, 'Path to output model directory '
|
|
'where event and checkpoint files will be written.')
|
|
flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config '
|
|
'file.')
|
|
flags.DEFINE_integer('num_train_steps', None, 'Number of train steps.')
|
|
flags.DEFINE_boolean('eval_training_data', False,
|
|
'If training data should be evaluated for this job. Note '
|
|
'that one call only use this in eval-only mode, and '
|
|
'`checkpoint_dir` must be supplied.')
|
|
flags.DEFINE_integer('sample_1_of_n_eval_examples', 1, 'Will sample one of '
|
|
'every n eval input examples, where n is provided.')
|
|
flags.DEFINE_integer('sample_1_of_n_eval_on_train_examples', 5, 'Will sample '
|
|
'one of every n train input examples for evaluation, '
|
|
'where n is provided. This is only used if '
|
|
'`eval_training_data` is True.')
|
|
flags.DEFINE_string(
|
|
'hparams_overrides', None, 'Hyperparameter overrides, '
|
|
'represented as a string containing comma-separated '
|
|
'hparam_name=value pairs.')
|
|
flags.DEFINE_string(
|
|
'checkpoint_dir', None, 'Path to directory holding a checkpoint. If '
|
|
'`checkpoint_dir` is provided, this binary operates in eval-only mode, '
|
|
'writing resulting metrics to `model_dir`.')
|
|
flags.DEFINE_boolean(
|
|
'run_once', False, 'If running in eval-only mode, whether to run just '
|
|
'one round of eval vs running continuously (default).'
|
|
)
|
|
FLAGS = flags.FLAGS
|
|
|
|
|
|
def main(unused_argv):
|
|
flags.mark_flag_as_required('model_dir')
|
|
flags.mark_flag_as_required('pipeline_config_path')
|
|
config = tf.estimator.RunConfig(model_dir=FLAGS.model_dir)
|
|
|
|
train_and_eval_dict = model_lib.create_estimator_and_inputs(
|
|
run_config=config,
|
|
hparams=model_hparams.create_hparams(FLAGS.hparams_overrides),
|
|
pipeline_config_path=FLAGS.pipeline_config_path,
|
|
train_steps=FLAGS.num_train_steps,
|
|
sample_1_of_n_eval_examples=FLAGS.sample_1_of_n_eval_examples,
|
|
sample_1_of_n_eval_on_train_examples=(
|
|
FLAGS.sample_1_of_n_eval_on_train_examples))
|
|
estimator = train_and_eval_dict['estimator']
|
|
train_input_fn = train_and_eval_dict['train_input_fn']
|
|
eval_input_fns = train_and_eval_dict['eval_input_fns']
|
|
eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
|
|
predict_input_fn = train_and_eval_dict['predict_input_fn']
|
|
train_steps = train_and_eval_dict['train_steps']
|
|
|
|
if FLAGS.checkpoint_dir:
|
|
if FLAGS.eval_training_data:
|
|
name = 'training_data'
|
|
input_fn = eval_on_train_input_fn
|
|
else:
|
|
name = 'validation_data'
|
|
# The first eval input will be evaluated.
|
|
input_fn = eval_input_fns[0]
|
|
if FLAGS.run_once:
|
|
estimator.evaluate(input_fn,
|
|
steps=None,
|
|
checkpoint_path=tf.train.latest_checkpoint(
|
|
FLAGS.checkpoint_dir))
|
|
else:
|
|
model_lib.continuous_eval(estimator, FLAGS.checkpoint_dir, input_fn,
|
|
train_steps, name)
|
|
else:
|
|
train_spec, eval_specs = model_lib.create_train_and_eval_specs(
|
|
train_input_fn,
|
|
eval_input_fns,
|
|
eval_on_train_input_fn,
|
|
predict_input_fn,
|
|
train_steps,
|
|
eval_on_train_data=False)
|
|
|
|
# Currently only a single Eval Spec is allowed.
|
|
tf.estimator.train_and_evaluate(estimator, train_spec, eval_specs[0])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.app.run()
|