|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Numpy BoxList classes and functions."""
|
|
|
|
import numpy as np
|
|
|
|
|
|
class BoxList(object):
|
|
"""Box collection.
|
|
|
|
BoxList represents a list of bounding boxes as numpy array, where each
|
|
bounding box is represented as a row of 4 numbers,
|
|
[y_min, x_min, y_max, x_max]. It is assumed that all bounding boxes within a
|
|
given list correspond to a single image.
|
|
|
|
Optionally, users can add additional related fields (such as
|
|
objectness/classification scores).
|
|
"""
|
|
|
|
def __init__(self, data):
|
|
"""Constructs box collection.
|
|
|
|
Args:
|
|
data: a numpy array of shape [N, 4] representing box coordinates
|
|
|
|
Raises:
|
|
ValueError: if bbox data is not a numpy array
|
|
ValueError: if invalid dimensions for bbox data
|
|
"""
|
|
if not isinstance(data, np.ndarray):
|
|
raise ValueError('data must be a numpy array.')
|
|
if len(data.shape) != 2 or data.shape[1] != 4:
|
|
raise ValueError('Invalid dimensions for box data.')
|
|
if data.dtype != np.float32 and data.dtype != np.float64:
|
|
raise ValueError('Invalid data type for box data: float is required.')
|
|
if not self._is_valid_boxes(data):
|
|
raise ValueError('Invalid box data. data must be a numpy array of '
|
|
'N*[y_min, x_min, y_max, x_max]')
|
|
self.data = {'boxes': data}
|
|
|
|
def num_boxes(self):
|
|
"""Return number of boxes held in collections."""
|
|
return self.data['boxes'].shape[0]
|
|
|
|
def get_extra_fields(self):
|
|
"""Return all non-box fields."""
|
|
return [k for k in self.data.keys() if k != 'boxes']
|
|
|
|
def has_field(self, field):
|
|
return field in self.data
|
|
|
|
def add_field(self, field, field_data):
|
|
"""Add data to a specified field.
|
|
|
|
Args:
|
|
field: a string parameter used to speficy a related field to be accessed.
|
|
field_data: a numpy array of [N, ...] representing the data associated
|
|
with the field.
|
|
Raises:
|
|
ValueError: if the field is already exist or the dimension of the field
|
|
data does not matches the number of boxes.
|
|
"""
|
|
if self.has_field(field):
|
|
raise ValueError('Field ' + field + 'already exists')
|
|
if len(field_data.shape) < 1 or field_data.shape[0] != self.num_boxes():
|
|
raise ValueError('Invalid dimensions for field data')
|
|
self.data[field] = field_data
|
|
|
|
def get(self):
|
|
"""Convenience function for accesssing box coordinates.
|
|
|
|
Returns:
|
|
a numpy array of shape [N, 4] representing box corners
|
|
"""
|
|
return self.get_field('boxes')
|
|
|
|
def get_field(self, field):
|
|
"""Accesses data associated with the specified field in the box collection.
|
|
|
|
Args:
|
|
field: a string parameter used to speficy a related field to be accessed.
|
|
|
|
Returns:
|
|
a numpy 1-d array representing data of an associated field
|
|
|
|
Raises:
|
|
ValueError: if invalid field
|
|
"""
|
|
if not self.has_field(field):
|
|
raise ValueError('field {} does not exist'.format(field))
|
|
return self.data[field]
|
|
|
|
def get_coordinates(self):
|
|
"""Get corner coordinates of boxes.
|
|
|
|
Returns:
|
|
a list of 4 1-d numpy arrays [y_min, x_min, y_max, x_max]
|
|
"""
|
|
box_coordinates = self.get()
|
|
y_min = box_coordinates[:, 0]
|
|
x_min = box_coordinates[:, 1]
|
|
y_max = box_coordinates[:, 2]
|
|
x_max = box_coordinates[:, 3]
|
|
return [y_min, x_min, y_max, x_max]
|
|
|
|
def _is_valid_boxes(self, data):
|
|
"""Check whether data fullfills the format of N*[ymin, xmin, ymax, xmin].
|
|
|
|
Args:
|
|
data: a numpy array of shape [N, 4] representing box coordinates
|
|
|
|
Returns:
|
|
a boolean indicating whether all ymax of boxes are equal or greater than
|
|
ymin, and all xmax of boxes are equal or greater than xmin.
|
|
"""
|
|
if data.shape[0] > 0:
|
|
for i in range(data.shape[0]):
|
|
if data[i, 0] > data[i, 2] or data[i, 1] > data[i, 3]:
|
|
return False
|
|
return True
|