You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

133 lines
4.4 KiB

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Numpy BoxList classes and functions."""
import numpy as np
class BoxList(object):
"""Box collection.
BoxList represents a list of bounding boxes as numpy array, where each
bounding box is represented as a row of 4 numbers,
[y_min, x_min, y_max, x_max]. It is assumed that all bounding boxes within a
given list correspond to a single image.
Optionally, users can add additional related fields (such as
objectness/classification scores).
"""
def __init__(self, data):
"""Constructs box collection.
Args:
data: a numpy array of shape [N, 4] representing box coordinates
Raises:
ValueError: if bbox data is not a numpy array
ValueError: if invalid dimensions for bbox data
"""
if not isinstance(data, np.ndarray):
raise ValueError('data must be a numpy array.')
if len(data.shape) != 2 or data.shape[1] != 4:
raise ValueError('Invalid dimensions for box data.')
if data.dtype != np.float32 and data.dtype != np.float64:
raise ValueError('Invalid data type for box data: float is required.')
if not self._is_valid_boxes(data):
raise ValueError('Invalid box data. data must be a numpy array of '
'N*[y_min, x_min, y_max, x_max]')
self.data = {'boxes': data}
def num_boxes(self):
"""Return number of boxes held in collections."""
return self.data['boxes'].shape[0]
def get_extra_fields(self):
"""Return all non-box fields."""
return [k for k in self.data.keys() if k != 'boxes']
def has_field(self, field):
return field in self.data
def add_field(self, field, field_data):
"""Add data to a specified field.
Args:
field: a string parameter used to speficy a related field to be accessed.
field_data: a numpy array of [N, ...] representing the data associated
with the field.
Raises:
ValueError: if the field is already exist or the dimension of the field
data does not matches the number of boxes.
"""
if self.has_field(field):
raise ValueError('Field ' + field + 'already exists')
if len(field_data.shape) < 1 or field_data.shape[0] != self.num_boxes():
raise ValueError('Invalid dimensions for field data')
self.data[field] = field_data
def get(self):
"""Convenience function for accesssing box coordinates.
Returns:
a numpy array of shape [N, 4] representing box corners
"""
return self.get_field('boxes')
def get_field(self, field):
"""Accesses data associated with the specified field in the box collection.
Args:
field: a string parameter used to speficy a related field to be accessed.
Returns:
a numpy 1-d array representing data of an associated field
Raises:
ValueError: if invalid field
"""
if not self.has_field(field):
raise ValueError('field {} does not exist'.format(field))
return self.data[field]
def get_coordinates(self):
"""Get corner coordinates of boxes.
Returns:
a list of 4 1-d numpy arrays [y_min, x_min, y_max, x_max]
"""
box_coordinates = self.get()
y_min = box_coordinates[:, 0]
x_min = box_coordinates[:, 1]
y_max = box_coordinates[:, 2]
x_max = box_coordinates[:, 3]
return [y_min, x_min, y_max, x_max]
def _is_valid_boxes(self, data):
"""Check whether data fullfills the format of N*[ymin, xmin, ymax, xmin].
Args:
data: a numpy array of shape [N, 4] representing box coordinates
Returns:
a boolean indicating whether all ymax of boxes are equal or greater than
ymin, and all xmax of boxes are equal or greater than xmin.
"""
if data.shape[0] > 0:
for i in range(data.shape[0]):
if data[i, 0] > data[i, 2] or data[i, 1] > data[i, 3]:
return False
return True