|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Numpy BoxMaskList classes and functions."""
|
|
|
|
import numpy as np
|
|
from object_detection.utils import np_box_list
|
|
|
|
|
|
class BoxMaskList(np_box_list.BoxList):
|
|
"""Convenience wrapper for BoxList with masks.
|
|
|
|
BoxMaskList extends the np_box_list.BoxList to contain masks as well.
|
|
In particular, its constructor receives both boxes and masks. Note that the
|
|
masks correspond to the full image.
|
|
"""
|
|
|
|
def __init__(self, box_data, mask_data):
|
|
"""Constructs box collection.
|
|
|
|
Args:
|
|
box_data: a numpy array of shape [N, 4] representing box coordinates
|
|
mask_data: a numpy array of shape [N, height, width] representing masks
|
|
with values are in {0,1}. The masks correspond to the full
|
|
image. The height and the width will be equal to image height and width.
|
|
|
|
Raises:
|
|
ValueError: if bbox data is not a numpy array
|
|
ValueError: if invalid dimensions for bbox data
|
|
ValueError: if mask data is not a numpy array
|
|
ValueError: if invalid dimension for mask data
|
|
"""
|
|
super(BoxMaskList, self).__init__(box_data)
|
|
if not isinstance(mask_data, np.ndarray):
|
|
raise ValueError('Mask data must be a numpy array.')
|
|
if len(mask_data.shape) != 3:
|
|
raise ValueError('Invalid dimensions for mask data.')
|
|
if mask_data.dtype != np.uint8:
|
|
raise ValueError('Invalid data type for mask data: uint8 is required.')
|
|
if mask_data.shape[0] != box_data.shape[0]:
|
|
raise ValueError('There should be the same number of boxes and masks.')
|
|
self.data['masks'] = mask_data
|
|
|
|
def get_masks(self):
|
|
"""Convenience function for accessing masks.
|
|
|
|
Returns:
|
|
a numpy array of shape [N, height, width] representing masks
|
|
"""
|
|
return self.get_field('masks')
|
|
|