|
|
- import cv2
- import numpy as np
- import os
- import sys
- import tensorflow as tf
-
- from sklearn.model_selection import train_test_split
-
- EPOCHS = 10
- IMG_WIDTH = 30
- IMG_HEIGHT = 30
- NUM_CATEGORIES = 43
- TEST_SIZE = 0.4
-
-
- def main():
-
- # Check command-line arguments
- if len(sys.argv) not in [2, 3]:
- sys.exit("Usage: python traffic.py data_directory [model.h5]")
-
- # Get image arrays and labels for all image files
- images, labels = load_data(sys.argv[1])
-
- # Split data into training and testing sets
- labels = tf.keras.utils.to_categorical(labels)
- x_train, x_test, y_train, y_test = train_test_split(
- np.array(images), np.array(labels), test_size=TEST_SIZE
- )
-
- # Get a compiled neural network
- model = get_model()
-
- # Fit model on training data
- model.fit(x_train, y_train, epochs=EPOCHS)
-
- # Evaluate neural network performance
- model.evaluate(x_test, y_test, verbose=2)
-
- # Save model to file
- if len(sys.argv) == 3:
- filename = sys.argv[2]
- model.save(filename)
- print(f"Model saved to {filename}.")
-
-
- def load_data(data_dir):
- """
- Load image data from directory `data_dir`.
-
- Assume `data_dir` has one directory named after each category, numbered
- 0 through NUM_CATEGORIES - 1. Inside each category directory will be some
- number of image files.
-
- Return tuple `(images, labels)`. `images` should be a list of all
- of the images in the data directory, where each image is formatted as a
- numpy ndarray with dimensions IMG_WIDTH x IMG_HEIGHT x 3. `labels` should
- be a list of integer labels, representing the categories for each of the
- corresponding `images`.
- """
- categories = os.listdir(data_dir)
- labels = []
- images = []
- for i in range(NUM_CATEGORIES):
- imgs = os.listdir(os.path.join(data_dir, str(i)))
- for j in imgs:
- img = cv2.imread(os.path.join(data_dir, str(i), j))
- resized = cv2.resize(img, (int(IMG_WIDTH),int(IMG_HEIGHT)))
- images.append(resized)
- labels.append(i)
-
- return (images, labels, )
-
-
- def get_model():
- """
- Returns a compiled convolutional neural network model. Assume that the
- `input_shape` of the first layer is `(IMG_WIDTH, IMG_HEIGHT, 3)`.
- The output layer should have `NUM_CATEGORIES` units, one for each category.
- """
- DROPOUT = 0.5
- CONV_LAYER_SIZE = (5, 5)
- CONV_LAYER_NUM = 32
- POOL_SIZE = (2, 2)
-
- model = tf.keras.models.Sequential([
- tf.keras.layers.Conv2D(
- CONV_LAYER_NUM, CONV_LAYER_SIZE, activation="relu", input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)
- ),
- tf.keras.layers.MaxPooling2D(pool_size=POOL_SIZE),
- tf.keras.layers.Flatten(),
- tf.keras.layers.Dense(64, activation="relu"),
- tf.keras.layers.Dense(32, activation="relu"),
- tf.keras.layers.Dropout(DROPOUT),
- tf.keras.layers.Dense(NUM_CATEGORIES, activation="softmax")
- ])
- model.compile(
- optimizer="adam",
- loss="categorical_crossentropy",
- metrics=["accuracy"]
- )
- return model
-
-
-
-
- if __name__ == "__main__":
- main()
|