My solutions to Harvard's online course CS50AI, An Introduction to Machine Learning
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

108 lines
3.2 KiB

import cv2
import numpy as np
import os
import sys
import tensorflow as tf
from sklearn.model_selection import train_test_split
EPOCHS = 10
IMG_WIDTH = 30
IMG_HEIGHT = 30
NUM_CATEGORIES = 43
TEST_SIZE = 0.4
def main():
# Check command-line arguments
if len(sys.argv) not in [2, 3]:
sys.exit("Usage: python traffic.py data_directory [model.h5]")
# Get image arrays and labels for all image files
images, labels = load_data(sys.argv[1])
# Split data into training and testing sets
labels = tf.keras.utils.to_categorical(labels)
x_train, x_test, y_train, y_test = train_test_split(
np.array(images), np.array(labels), test_size=TEST_SIZE
)
# Get a compiled neural network
model = get_model()
# Fit model on training data
model.fit(x_train, y_train, epochs=EPOCHS)
# Evaluate neural network performance
model.evaluate(x_test, y_test, verbose=2)
# Save model to file
if len(sys.argv) == 3:
filename = sys.argv[2]
model.save(filename)
print(f"Model saved to {filename}.")
def load_data(data_dir):
"""
Load image data from directory `data_dir`.
Assume `data_dir` has one directory named after each category, numbered
0 through NUM_CATEGORIES - 1. Inside each category directory will be some
number of image files.
Return tuple `(images, labels)`. `images` should be a list of all
of the images in the data directory, where each image is formatted as a
numpy ndarray with dimensions IMG_WIDTH x IMG_HEIGHT x 3. `labels` should
be a list of integer labels, representing the categories for each of the
corresponding `images`.
"""
categories = os.listdir(data_dir)
labels = []
images = []
for i in range(NUM_CATEGORIES):
imgs = os.listdir(os.path.join(data_dir, str(i)))
for j in imgs:
img = cv2.imread(os.path.join(data_dir, str(i), j))
resized = cv2.resize(img, (int(IMG_WIDTH),int(IMG_HEIGHT)))
images.append(resized)
labels.append(i)
return (images, labels, )
def get_model():
"""
Returns a compiled convolutional neural network model. Assume that the
`input_shape` of the first layer is `(IMG_WIDTH, IMG_HEIGHT, 3)`.
The output layer should have `NUM_CATEGORIES` units, one for each category.
"""
DROPOUT = 0.5
CONV_LAYER_SIZE = (5, 5)
CONV_LAYER_NUM = 32
POOL_SIZE = (2, 2)
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(
CONV_LAYER_NUM, CONV_LAYER_SIZE, activation="relu", input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)
),
tf.keras.layers.MaxPooling2D(pool_size=POOL_SIZE),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(32, activation="relu"),
tf.keras.layers.Dropout(DROPOUT),
tf.keras.layers.Dense(NUM_CATEGORIES, activation="softmax")
])
model.compile(
optimizer="adam",
loss="categorical_crossentropy",
metrics=["accuracy"]
)
return model
if __name__ == "__main__":
main()