|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Tests for post_processing_builder."""
-
- import tensorflow as tf
- from google.protobuf import text_format
- from object_detection.builders import post_processing_builder
- from object_detection.protos import post_processing_pb2
-
-
- class PostProcessingBuilderTest(tf.test.TestCase):
-
- def test_build_non_max_suppressor_with_correct_parameters(self):
- post_processing_text_proto = """
- batch_non_max_suppression {
- score_threshold: 0.7
- iou_threshold: 0.6
- max_detections_per_class: 100
- max_total_detections: 300
- }
- """
- post_processing_config = post_processing_pb2.PostProcessing()
- text_format.Merge(post_processing_text_proto, post_processing_config)
- non_max_suppressor, _ = post_processing_builder.build(
- post_processing_config)
- self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 100)
- self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300)
- self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7)
- self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6)
-
- def test_build_identity_score_converter(self):
- post_processing_text_proto = """
- score_converter: IDENTITY
- """
- post_processing_config = post_processing_pb2.PostProcessing()
- text_format.Merge(post_processing_text_proto, post_processing_config)
- _, score_converter = post_processing_builder.build(
- post_processing_config)
- self.assertEqual(score_converter.__name__, 'identity_with_logit_scale')
-
- inputs = tf.constant([1, 1], tf.float32)
- outputs = score_converter(inputs)
- with self.test_session() as sess:
- converted_scores = sess.run(outputs)
- expected_converted_scores = sess.run(inputs)
- self.assertAllClose(converted_scores, expected_converted_scores)
-
- def test_build_identity_score_converter_with_logit_scale(self):
- post_processing_text_proto = """
- score_converter: IDENTITY
- logit_scale: 2.0
- """
- post_processing_config = post_processing_pb2.PostProcessing()
- text_format.Merge(post_processing_text_proto, post_processing_config)
- _, score_converter = post_processing_builder.build(post_processing_config)
- self.assertEqual(score_converter.__name__, 'identity_with_logit_scale')
-
- inputs = tf.constant([1, 1], tf.float32)
- outputs = score_converter(inputs)
- with self.test_session() as sess:
- converted_scores = sess.run(outputs)
- expected_converted_scores = sess.run(tf.constant([.5, .5], tf.float32))
- self.assertAllClose(converted_scores, expected_converted_scores)
-
- def test_build_sigmoid_score_converter(self):
- post_processing_text_proto = """
- score_converter: SIGMOID
- """
- post_processing_config = post_processing_pb2.PostProcessing()
- text_format.Merge(post_processing_text_proto, post_processing_config)
- _, score_converter = post_processing_builder.build(post_processing_config)
- self.assertEqual(score_converter.__name__, 'sigmoid_with_logit_scale')
-
- def test_build_softmax_score_converter(self):
- post_processing_text_proto = """
- score_converter: SOFTMAX
- """
- post_processing_config = post_processing_pb2.PostProcessing()
- text_format.Merge(post_processing_text_proto, post_processing_config)
- _, score_converter = post_processing_builder.build(post_processing_config)
- self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale')
-
- def test_build_softmax_score_converter_with_temperature(self):
- post_processing_text_proto = """
- score_converter: SOFTMAX
- logit_scale: 2.0
- """
- post_processing_config = post_processing_pb2.PostProcessing()
- text_format.Merge(post_processing_text_proto, post_processing_config)
- _, score_converter = post_processing_builder.build(post_processing_config)
- self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale')
-
- def test_build_calibrator_with_nonempty_config(self):
- """Test that identity function used when no calibration_config specified."""
- # Calibration config maps all scores to 0.5.
- post_processing_text_proto = """
- score_converter: SOFTMAX
- calibration_config {
- function_approximation {
- x_y_pairs {
- x_y_pair {
- x: 0.0
- y: 0.5
- }
- x_y_pair {
- x: 1.0
- y: 0.5
- }}}}"""
- post_processing_config = post_processing_pb2.PostProcessing()
- text_format.Merge(post_processing_text_proto, post_processing_config)
- _, calibrated_score_conversion_fn = post_processing_builder.build(
- post_processing_config)
- self.assertEqual(calibrated_score_conversion_fn.__name__,
- 'calibrate_with_function_approximation')
-
- input_scores = tf.constant([1, 1], tf.float32)
- outputs = calibrated_score_conversion_fn(input_scores)
- with self.test_session() as sess:
- calibrated_scores = sess.run(outputs)
- expected_calibrated_scores = sess.run(tf.constant([0.5, 0.5], tf.float32))
- self.assertAllClose(calibrated_scores, expected_calibrated_scores)
-
-
- if __name__ == '__main__':
- tf.test.main()
|