You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

138 lines
5.7 KiB

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for post_processing_builder."""
import tensorflow as tf
from google.protobuf import text_format
from object_detection.builders import post_processing_builder
from object_detection.protos import post_processing_pb2
class PostProcessingBuilderTest(tf.test.TestCase):
def test_build_non_max_suppressor_with_correct_parameters(self):
post_processing_text_proto = """
batch_non_max_suppression {
score_threshold: 0.7
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
non_max_suppressor, _ = post_processing_builder.build(
post_processing_config)
self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 100)
self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300)
self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7)
self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6)
def test_build_identity_score_converter(self):
post_processing_text_proto = """
score_converter: IDENTITY
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(
post_processing_config)
self.assertEqual(score_converter.__name__, 'identity_with_logit_scale')
inputs = tf.constant([1, 1], tf.float32)
outputs = score_converter(inputs)
with self.test_session() as sess:
converted_scores = sess.run(outputs)
expected_converted_scores = sess.run(inputs)
self.assertAllClose(converted_scores, expected_converted_scores)
def test_build_identity_score_converter_with_logit_scale(self):
post_processing_text_proto = """
score_converter: IDENTITY
logit_scale: 2.0
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(post_processing_config)
self.assertEqual(score_converter.__name__, 'identity_with_logit_scale')
inputs = tf.constant([1, 1], tf.float32)
outputs = score_converter(inputs)
with self.test_session() as sess:
converted_scores = sess.run(outputs)
expected_converted_scores = sess.run(tf.constant([.5, .5], tf.float32))
self.assertAllClose(converted_scores, expected_converted_scores)
def test_build_sigmoid_score_converter(self):
post_processing_text_proto = """
score_converter: SIGMOID
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(post_processing_config)
self.assertEqual(score_converter.__name__, 'sigmoid_with_logit_scale')
def test_build_softmax_score_converter(self):
post_processing_text_proto = """
score_converter: SOFTMAX
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(post_processing_config)
self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale')
def test_build_softmax_score_converter_with_temperature(self):
post_processing_text_proto = """
score_converter: SOFTMAX
logit_scale: 2.0
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(post_processing_config)
self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale')
def test_build_calibrator_with_nonempty_config(self):
"""Test that identity function used when no calibration_config specified."""
# Calibration config maps all scores to 0.5.
post_processing_text_proto = """
score_converter: SOFTMAX
calibration_config {
function_approximation {
x_y_pairs {
x_y_pair {
x: 0.0
y: 0.5
}
x_y_pair {
x: 1.0
y: 0.5
}}}}"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, calibrated_score_conversion_fn = post_processing_builder.build(
post_processing_config)
self.assertEqual(calibrated_score_conversion_fn.__name__,
'calibrate_with_function_approximation')
input_scores = tf.constant([1, 1], tf.float32)
outputs = calibrated_score_conversion_fn(input_scores)
with self.test_session() as sess:
calibrated_scores = sess.run(outputs)
expected_calibrated_scores = sess.run(tf.constant([0.5, 0.5], tf.float32))
self.assertAllClose(calibrated_scores, expected_calibrated_scores)
if __name__ == '__main__':
tf.test.main()