|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Tests for post_processing_builder."""
|
|
|
|
import tensorflow as tf
|
|
from google.protobuf import text_format
|
|
from object_detection.builders import post_processing_builder
|
|
from object_detection.protos import post_processing_pb2
|
|
|
|
|
|
class PostProcessingBuilderTest(tf.test.TestCase):
|
|
|
|
def test_build_non_max_suppressor_with_correct_parameters(self):
|
|
post_processing_text_proto = """
|
|
batch_non_max_suppression {
|
|
score_threshold: 0.7
|
|
iou_threshold: 0.6
|
|
max_detections_per_class: 100
|
|
max_total_detections: 300
|
|
}
|
|
"""
|
|
post_processing_config = post_processing_pb2.PostProcessing()
|
|
text_format.Merge(post_processing_text_proto, post_processing_config)
|
|
non_max_suppressor, _ = post_processing_builder.build(
|
|
post_processing_config)
|
|
self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 100)
|
|
self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300)
|
|
self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7)
|
|
self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6)
|
|
|
|
def test_build_identity_score_converter(self):
|
|
post_processing_text_proto = """
|
|
score_converter: IDENTITY
|
|
"""
|
|
post_processing_config = post_processing_pb2.PostProcessing()
|
|
text_format.Merge(post_processing_text_proto, post_processing_config)
|
|
_, score_converter = post_processing_builder.build(
|
|
post_processing_config)
|
|
self.assertEqual(score_converter.__name__, 'identity_with_logit_scale')
|
|
|
|
inputs = tf.constant([1, 1], tf.float32)
|
|
outputs = score_converter(inputs)
|
|
with self.test_session() as sess:
|
|
converted_scores = sess.run(outputs)
|
|
expected_converted_scores = sess.run(inputs)
|
|
self.assertAllClose(converted_scores, expected_converted_scores)
|
|
|
|
def test_build_identity_score_converter_with_logit_scale(self):
|
|
post_processing_text_proto = """
|
|
score_converter: IDENTITY
|
|
logit_scale: 2.0
|
|
"""
|
|
post_processing_config = post_processing_pb2.PostProcessing()
|
|
text_format.Merge(post_processing_text_proto, post_processing_config)
|
|
_, score_converter = post_processing_builder.build(post_processing_config)
|
|
self.assertEqual(score_converter.__name__, 'identity_with_logit_scale')
|
|
|
|
inputs = tf.constant([1, 1], tf.float32)
|
|
outputs = score_converter(inputs)
|
|
with self.test_session() as sess:
|
|
converted_scores = sess.run(outputs)
|
|
expected_converted_scores = sess.run(tf.constant([.5, .5], tf.float32))
|
|
self.assertAllClose(converted_scores, expected_converted_scores)
|
|
|
|
def test_build_sigmoid_score_converter(self):
|
|
post_processing_text_proto = """
|
|
score_converter: SIGMOID
|
|
"""
|
|
post_processing_config = post_processing_pb2.PostProcessing()
|
|
text_format.Merge(post_processing_text_proto, post_processing_config)
|
|
_, score_converter = post_processing_builder.build(post_processing_config)
|
|
self.assertEqual(score_converter.__name__, 'sigmoid_with_logit_scale')
|
|
|
|
def test_build_softmax_score_converter(self):
|
|
post_processing_text_proto = """
|
|
score_converter: SOFTMAX
|
|
"""
|
|
post_processing_config = post_processing_pb2.PostProcessing()
|
|
text_format.Merge(post_processing_text_proto, post_processing_config)
|
|
_, score_converter = post_processing_builder.build(post_processing_config)
|
|
self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale')
|
|
|
|
def test_build_softmax_score_converter_with_temperature(self):
|
|
post_processing_text_proto = """
|
|
score_converter: SOFTMAX
|
|
logit_scale: 2.0
|
|
"""
|
|
post_processing_config = post_processing_pb2.PostProcessing()
|
|
text_format.Merge(post_processing_text_proto, post_processing_config)
|
|
_, score_converter = post_processing_builder.build(post_processing_config)
|
|
self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale')
|
|
|
|
def test_build_calibrator_with_nonempty_config(self):
|
|
"""Test that identity function used when no calibration_config specified."""
|
|
# Calibration config maps all scores to 0.5.
|
|
post_processing_text_proto = """
|
|
score_converter: SOFTMAX
|
|
calibration_config {
|
|
function_approximation {
|
|
x_y_pairs {
|
|
x_y_pair {
|
|
x: 0.0
|
|
y: 0.5
|
|
}
|
|
x_y_pair {
|
|
x: 1.0
|
|
y: 0.5
|
|
}}}}"""
|
|
post_processing_config = post_processing_pb2.PostProcessing()
|
|
text_format.Merge(post_processing_text_proto, post_processing_config)
|
|
_, calibrated_score_conversion_fn = post_processing_builder.build(
|
|
post_processing_config)
|
|
self.assertEqual(calibrated_score_conversion_fn.__name__,
|
|
'calibrate_with_function_approximation')
|
|
|
|
input_scores = tf.constant([1, 1], tf.float32)
|
|
outputs = calibrated_score_conversion_fn(input_scores)
|
|
with self.test_session() as sess:
|
|
calibrated_scores = sess.run(outputs)
|
|
expected_calibrated_scores = sess.run(tf.constant([0.5, 0.5], tf.float32))
|
|
self.assertAllClose(calibrated_scores, expected_calibrated_scores)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|