|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Tests for object_detection.export_inference_graph."""
- import os
- import numpy as np
- import six
- import tensorflow as tf
- from google.protobuf import text_format
- from tensorflow.python.framework import dtypes
- from tensorflow.python.ops import array_ops
- from object_detection import exporter
- from object_detection.builders import graph_rewriter_builder
- from object_detection.builders import model_builder
- from object_detection.core import model
- from object_detection.protos import graph_rewriter_pb2
- from object_detection.protos import pipeline_pb2
- from object_detection.utils import ops
-
- if six.PY2:
- import mock # pylint: disable=g-import-not-at-top
- else:
- from unittest import mock # pylint: disable=g-import-not-at-top
-
- slim = tf.contrib.slim
-
-
- class FakeModel(model.DetectionModel):
-
- def __init__(self, add_detection_keypoints=False, add_detection_masks=False):
- self._add_detection_keypoints = add_detection_keypoints
- self._add_detection_masks = add_detection_masks
-
- def preprocess(self, inputs):
- true_image_shapes = [] # Doesn't matter for the fake model.
- return tf.identity(inputs), true_image_shapes
-
- def predict(self, preprocessed_inputs, true_image_shapes):
- return {'image': tf.layers.conv2d(preprocessed_inputs, 3, 1)}
-
- def postprocess(self, prediction_dict, true_image_shapes):
- with tf.control_dependencies(prediction_dict.values()):
- postprocessed_tensors = {
- 'detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5],
- [0.5, 0.5, 0.8, 0.8]],
- [[0.5, 0.5, 1.0, 1.0],
- [0.0, 0.0, 0.0, 0.0]]], tf.float32),
- 'detection_scores': tf.constant([[0.7, 0.6],
- [0.9, 0.0]], tf.float32),
- 'detection_classes': tf.constant([[0, 1],
- [1, 0]], tf.float32),
- 'num_detections': tf.constant([2, 1], tf.float32),
- 'raw_detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5],
- [0.5, 0.5, 0.8, 0.8]],
- [[0.5, 0.5, 1.0, 1.0],
- [0.0, 0.5, 0.0, 0.5]]],
- tf.float32),
- 'raw_detection_scores': tf.constant([[0.7, 0.6],
- [0.9, 0.5]], tf.float32),
- }
- if self._add_detection_keypoints:
- postprocessed_tensors['detection_keypoints'] = tf.constant(
- np.arange(48).reshape([2, 2, 6, 2]), tf.float32)
- if self._add_detection_masks:
- postprocessed_tensors['detection_masks'] = tf.constant(
- np.arange(64).reshape([2, 2, 4, 4]), tf.float32)
- return postprocessed_tensors
-
- def restore_map(self, checkpoint_path, fine_tune_checkpoint_type):
- pass
-
- def loss(self, prediction_dict, true_image_shapes):
- pass
-
- def regularization_losses(self):
- pass
-
- def updates(self):
- pass
-
-
- class ExportInferenceGraphTest(tf.test.TestCase):
-
- def _save_checkpoint_from_mock_model(self,
- checkpoint_path,
- use_moving_averages,
- enable_quantization=False):
- g = tf.Graph()
- with g.as_default():
- mock_model = FakeModel()
- preprocessed_inputs, true_image_shapes = mock_model.preprocess(
- tf.placeholder(tf.float32, shape=[None, None, None, 3]))
- predictions = mock_model.predict(preprocessed_inputs, true_image_shapes)
- mock_model.postprocess(predictions, true_image_shapes)
- if use_moving_averages:
- tf.train.ExponentialMovingAverage(0.0).apply()
- tf.train.get_or_create_global_step()
- if enable_quantization:
- graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
- graph_rewriter_config.quantization.delay = 500000
- graph_rewriter_fn = graph_rewriter_builder.build(
- graph_rewriter_config, is_training=False)
- graph_rewriter_fn()
- saver = tf.train.Saver()
- init = tf.global_variables_initializer()
- with self.test_session() as sess:
- sess.run(init)
- saver.save(sess, checkpoint_path)
-
- def _load_inference_graph(self, inference_graph_path, is_binary=True):
- od_graph = tf.Graph()
- with od_graph.as_default():
- od_graph_def = tf.GraphDef()
- with tf.gfile.GFile(inference_graph_path) as fid:
- if is_binary:
- od_graph_def.ParseFromString(fid.read())
- else:
- text_format.Parse(fid.read(), od_graph_def)
- tf.import_graph_def(od_graph_def, name='')
- return od_graph
-
- def _create_tf_example(self, image_array):
- with self.test_session():
- encoded_image = tf.image.encode_jpeg(tf.constant(image_array)).eval()
- def _bytes_feature(value):
- return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
- example = tf.train.Example(features=tf.train.Features(feature={
- 'image/encoded': _bytes_feature(encoded_image),
- 'image/format': _bytes_feature('jpg'),
- 'image/source_id': _bytes_feature('image_id')
- })).SerializeToString()
- return example
-
- def test_export_graph_with_image_tensor_input(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=False)
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel()
- output_directory = os.path.join(tmp_dir, 'output')
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- exporter.export_inference_graph(
- input_type='image_tensor',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
- self.assertTrue(os.path.exists(os.path.join(
- output_directory, 'saved_model', 'saved_model.pb')))
-
- def test_write_inference_graph(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=False)
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel()
- output_directory = os.path.join(tmp_dir, 'output')
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- exporter.export_inference_graph(
- input_type='image_tensor',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory,
- write_inference_graph=True)
- self.assertTrue(os.path.exists(os.path.join(
- output_directory, 'inference_graph.pbtxt')))
-
- def test_export_graph_with_fixed_size_image_tensor_input(self):
- input_shape = [1, 320, 320, 3]
-
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(
- trained_checkpoint_prefix, use_moving_averages=False)
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel()
- output_directory = os.path.join(tmp_dir, 'output')
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- exporter.export_inference_graph(
- input_type='image_tensor',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory,
- input_shape=input_shape)
- saved_model_path = os.path.join(output_directory, 'saved_model')
- self.assertTrue(
- os.path.exists(os.path.join(saved_model_path, 'saved_model.pb')))
-
- with tf.Graph().as_default() as od_graph:
- with self.test_session(graph=od_graph) as sess:
- meta_graph = tf.saved_model.loader.load(
- sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
- signature = meta_graph.signature_def['serving_default']
- input_tensor_name = signature.inputs['inputs'].name
- image_tensor = od_graph.get_tensor_by_name(input_tensor_name)
- self.assertSequenceEqual(image_tensor.get_shape().as_list(),
- input_shape)
-
- def test_export_graph_with_tf_example_input(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=False)
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel()
- output_directory = os.path.join(tmp_dir, 'output')
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- exporter.export_inference_graph(
- input_type='tf_example',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
- self.assertTrue(os.path.exists(os.path.join(
- output_directory, 'saved_model', 'saved_model.pb')))
-
- def test_export_graph_with_encoded_image_string_input(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=False)
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel()
- output_directory = os.path.join(tmp_dir, 'output')
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- exporter.export_inference_graph(
- input_type='encoded_image_string_tensor',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
- self.assertTrue(os.path.exists(os.path.join(
- output_directory, 'saved_model', 'saved_model.pb')))
-
- def _get_variables_in_checkpoint(self, checkpoint_file):
- return set([
- var_name
- for var_name, _ in tf.train.list_variables(checkpoint_file)])
-
- def test_replace_variable_values_with_moving_averages(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- new_checkpoint_prefix = os.path.join(tmp_dir, 'new.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=True)
- graph = tf.Graph()
- with graph.as_default():
- fake_model = FakeModel()
- preprocessed_inputs, true_image_shapes = fake_model.preprocess(
- tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3]))
- predictions = fake_model.predict(preprocessed_inputs, true_image_shapes)
- fake_model.postprocess(predictions, true_image_shapes)
- exporter.replace_variable_values_with_moving_averages(
- graph, trained_checkpoint_prefix, new_checkpoint_prefix)
-
- expected_variables = set(['conv2d/bias', 'conv2d/kernel'])
- variables_in_old_ckpt = self._get_variables_in_checkpoint(
- trained_checkpoint_prefix)
- self.assertIn('conv2d/bias/ExponentialMovingAverage',
- variables_in_old_ckpt)
- self.assertIn('conv2d/kernel/ExponentialMovingAverage',
- variables_in_old_ckpt)
- variables_in_new_ckpt = self._get_variables_in_checkpoint(
- new_checkpoint_prefix)
- self.assertTrue(expected_variables.issubset(variables_in_new_ckpt))
- self.assertNotIn('conv2d/bias/ExponentialMovingAverage',
- variables_in_new_ckpt)
- self.assertNotIn('conv2d/kernel/ExponentialMovingAverage',
- variables_in_new_ckpt)
-
- def test_export_graph_with_moving_averages(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=True)
- output_directory = os.path.join(tmp_dir, 'output')
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel()
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = True
- exporter.export_inference_graph(
- input_type='image_tensor',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
- self.assertTrue(os.path.exists(os.path.join(
- output_directory, 'saved_model', 'saved_model.pb')))
- expected_variables = set(['conv2d/bias', 'conv2d/kernel', 'global_step'])
- actual_variables = set(
- [var_name for var_name, _ in tf.train.list_variables(output_directory)])
- self.assertTrue(expected_variables.issubset(actual_variables))
-
- def test_export_model_with_quantization_nodes(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(
- trained_checkpoint_prefix,
- use_moving_averages=False,
- enable_quantization=True)
- output_directory = os.path.join(tmp_dir, 'output')
- inference_graph_path = os.path.join(output_directory,
- 'inference_graph.pbtxt')
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel()
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- text_format.Merge(
- """graph_rewriter {
- quantization {
- delay: 50000
- activation_bits: 8
- weight_bits: 8
- }
- }""", pipeline_config)
- exporter.export_inference_graph(
- input_type='image_tensor',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory,
- write_inference_graph=True)
- self._load_inference_graph(inference_graph_path, is_binary=False)
- has_quant_nodes = False
- for v in tf.global_variables():
- if v.op.name.endswith('act_quant/min'):
- has_quant_nodes = True
- break
- self.assertTrue(has_quant_nodes)
-
- def test_export_model_with_all_output_nodes(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=True)
- output_directory = os.path.join(tmp_dir, 'output')
- inference_graph_path = os.path.join(output_directory,
- 'frozen_inference_graph.pb')
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel(
- add_detection_keypoints=True, add_detection_masks=True)
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- exporter.export_inference_graph(
- input_type='image_tensor',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
- inference_graph = self._load_inference_graph(inference_graph_path)
- with self.test_session(graph=inference_graph):
- inference_graph.get_tensor_by_name('image_tensor:0')
- inference_graph.get_tensor_by_name('detection_boxes:0')
- inference_graph.get_tensor_by_name('detection_scores:0')
- inference_graph.get_tensor_by_name('detection_classes:0')
- inference_graph.get_tensor_by_name('detection_keypoints:0')
- inference_graph.get_tensor_by_name('detection_masks:0')
- inference_graph.get_tensor_by_name('num_detections:0')
-
- def test_export_model_with_detection_only_nodes(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=True)
- output_directory = os.path.join(tmp_dir, 'output')
- inference_graph_path = os.path.join(output_directory,
- 'frozen_inference_graph.pb')
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel(add_detection_masks=False)
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- exporter.export_inference_graph(
- input_type='image_tensor',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
- inference_graph = self._load_inference_graph(inference_graph_path)
- with self.test_session(graph=inference_graph):
- inference_graph.get_tensor_by_name('image_tensor:0')
- inference_graph.get_tensor_by_name('detection_boxes:0')
- inference_graph.get_tensor_by_name('detection_scores:0')
- inference_graph.get_tensor_by_name('detection_classes:0')
- inference_graph.get_tensor_by_name('num_detections:0')
- with self.assertRaises(KeyError):
- inference_graph.get_tensor_by_name('detection_keypoints:0')
- inference_graph.get_tensor_by_name('detection_masks:0')
-
- def test_export_and_run_inference_with_image_tensor(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=True)
- output_directory = os.path.join(tmp_dir, 'output')
- inference_graph_path = os.path.join(output_directory,
- 'frozen_inference_graph.pb')
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel(
- add_detection_keypoints=True, add_detection_masks=True)
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- exporter.export_inference_graph(
- input_type='image_tensor',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
-
- inference_graph = self._load_inference_graph(inference_graph_path)
- with self.test_session(graph=inference_graph) as sess:
- image_tensor = inference_graph.get_tensor_by_name('image_tensor:0')
- boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
- scores = inference_graph.get_tensor_by_name('detection_scores:0')
- classes = inference_graph.get_tensor_by_name('detection_classes:0')
- keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
- masks = inference_graph.get_tensor_by_name('detection_masks:0')
- num_detections = inference_graph.get_tensor_by_name('num_detections:0')
- (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
- num_detections_np) = sess.run(
- [boxes, scores, classes, keypoints, masks, num_detections],
- feed_dict={image_tensor: np.ones((2, 4, 4, 3)).astype(np.uint8)})
- self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
- [0.5, 0.5, 0.8, 0.8]],
- [[0.5, 0.5, 1.0, 1.0],
- [0.0, 0.0, 0.0, 0.0]]])
- self.assertAllClose(scores_np, [[0.7, 0.6],
- [0.9, 0.0]])
- self.assertAllClose(classes_np, [[1, 2],
- [2, 1]])
- self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
- self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
- self.assertAllClose(num_detections_np, [2, 1])
-
- def _create_encoded_image_string(self, image_array_np, encoding_format):
- od_graph = tf.Graph()
- with od_graph.as_default():
- if encoding_format == 'jpg':
- encoded_string = tf.image.encode_jpeg(image_array_np)
- elif encoding_format == 'png':
- encoded_string = tf.image.encode_png(image_array_np)
- else:
- raise ValueError('Supports only the following formats: `jpg`, `png`')
- with self.test_session(graph=od_graph):
- return encoded_string.eval()
-
- def test_export_and_run_inference_with_encoded_image_string_tensor(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=True)
- output_directory = os.path.join(tmp_dir, 'output')
- inference_graph_path = os.path.join(output_directory,
- 'frozen_inference_graph.pb')
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel(
- add_detection_keypoints=True, add_detection_masks=True)
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- exporter.export_inference_graph(
- input_type='encoded_image_string_tensor',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
-
- inference_graph = self._load_inference_graph(inference_graph_path)
- jpg_image_str = self._create_encoded_image_string(
- np.ones((4, 4, 3)).astype(np.uint8), 'jpg')
- png_image_str = self._create_encoded_image_string(
- np.ones((4, 4, 3)).astype(np.uint8), 'png')
- with self.test_session(graph=inference_graph) as sess:
- image_str_tensor = inference_graph.get_tensor_by_name(
- 'encoded_image_string_tensor:0')
- boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
- scores = inference_graph.get_tensor_by_name('detection_scores:0')
- classes = inference_graph.get_tensor_by_name('detection_classes:0')
- keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
- masks = inference_graph.get_tensor_by_name('detection_masks:0')
- num_detections = inference_graph.get_tensor_by_name('num_detections:0')
- for image_str in [jpg_image_str, png_image_str]:
- image_str_batch_np = np.hstack([image_str]* 2)
- (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
- num_detections_np) = sess.run(
- [boxes, scores, classes, keypoints, masks, num_detections],
- feed_dict={image_str_tensor: image_str_batch_np})
- self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
- [0.5, 0.5, 0.8, 0.8]],
- [[0.5, 0.5, 1.0, 1.0],
- [0.0, 0.0, 0.0, 0.0]]])
- self.assertAllClose(scores_np, [[0.7, 0.6],
- [0.9, 0.0]])
- self.assertAllClose(classes_np, [[1, 2],
- [2, 1]])
- self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
- self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
- self.assertAllClose(num_detections_np, [2, 1])
-
- def test_raise_runtime_error_on_images_with_different_sizes(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=True)
- output_directory = os.path.join(tmp_dir, 'output')
- inference_graph_path = os.path.join(output_directory,
- 'frozen_inference_graph.pb')
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel(
- add_detection_keypoints=True, add_detection_masks=True)
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- exporter.export_inference_graph(
- input_type='encoded_image_string_tensor',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
-
- inference_graph = self._load_inference_graph(inference_graph_path)
- large_image = self._create_encoded_image_string(
- np.ones((4, 4, 3)).astype(np.uint8), 'jpg')
- small_image = self._create_encoded_image_string(
- np.ones((2, 2, 3)).astype(np.uint8), 'jpg')
-
- image_str_batch_np = np.hstack([large_image, small_image])
- with self.test_session(graph=inference_graph) as sess:
- image_str_tensor = inference_graph.get_tensor_by_name(
- 'encoded_image_string_tensor:0')
- boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
- scores = inference_graph.get_tensor_by_name('detection_scores:0')
- classes = inference_graph.get_tensor_by_name('detection_classes:0')
- keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
- masks = inference_graph.get_tensor_by_name('detection_masks:0')
- num_detections = inference_graph.get_tensor_by_name('num_detections:0')
- with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
- 'TensorArray.*shape'):
- sess.run(
- [boxes, scores, classes, keypoints, masks, num_detections],
- feed_dict={image_str_tensor: image_str_batch_np})
-
- def test_export_and_run_inference_with_tf_example(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=True)
- output_directory = os.path.join(tmp_dir, 'output')
- inference_graph_path = os.path.join(output_directory,
- 'frozen_inference_graph.pb')
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel(
- add_detection_keypoints=True, add_detection_masks=True)
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- exporter.export_inference_graph(
- input_type='tf_example',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
-
- inference_graph = self._load_inference_graph(inference_graph_path)
- tf_example_np = np.expand_dims(self._create_tf_example(
- np.ones((4, 4, 3)).astype(np.uint8)), axis=0)
- with self.test_session(graph=inference_graph) as sess:
- tf_example = inference_graph.get_tensor_by_name('tf_example:0')
- boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
- scores = inference_graph.get_tensor_by_name('detection_scores:0')
- classes = inference_graph.get_tensor_by_name('detection_classes:0')
- keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
- masks = inference_graph.get_tensor_by_name('detection_masks:0')
- num_detections = inference_graph.get_tensor_by_name('num_detections:0')
- (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
- num_detections_np) = sess.run(
- [boxes, scores, classes, keypoints, masks, num_detections],
- feed_dict={tf_example: tf_example_np})
- self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
- [0.5, 0.5, 0.8, 0.8]],
- [[0.5, 0.5, 1.0, 1.0],
- [0.0, 0.0, 0.0, 0.0]]])
- self.assertAllClose(scores_np, [[0.7, 0.6],
- [0.9, 0.0]])
- self.assertAllClose(classes_np, [[1, 2],
- [2, 1]])
- self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
- self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
- self.assertAllClose(num_detections_np, [2, 1])
-
- def test_write_frozen_graph(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=True)
- output_directory = os.path.join(tmp_dir, 'output')
- inference_graph_path = os.path.join(output_directory,
- 'frozen_inference_graph.pb')
- tf.gfile.MakeDirs(output_directory)
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel(
- add_detection_keypoints=True, add_detection_masks=True)
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- detection_model = model_builder.build(pipeline_config.model,
- is_training=False)
- outputs, _ = exporter.build_detection_graph(
- input_type='tf_example',
- detection_model=detection_model,
- input_shape=None,
- output_collection_name='inference_op',
- graph_hook_fn=None)
- output_node_names = ','.join(outputs.keys())
- saver = tf.train.Saver()
- input_saver_def = saver.as_saver_def()
- exporter.freeze_graph_with_def_protos(
- input_graph_def=tf.get_default_graph().as_graph_def(),
- input_saver_def=input_saver_def,
- input_checkpoint=trained_checkpoint_prefix,
- output_node_names=output_node_names,
- restore_op_name='save/restore_all',
- filename_tensor_name='save/Const:0',
- output_graph=inference_graph_path,
- clear_devices=True,
- initializer_nodes='')
-
- inference_graph = self._load_inference_graph(inference_graph_path)
- tf_example_np = np.expand_dims(self._create_tf_example(
- np.ones((4, 4, 3)).astype(np.uint8)), axis=0)
- with self.test_session(graph=inference_graph) as sess:
- tf_example = inference_graph.get_tensor_by_name('tf_example:0')
- boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
- scores = inference_graph.get_tensor_by_name('detection_scores:0')
- classes = inference_graph.get_tensor_by_name('detection_classes:0')
- keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
- masks = inference_graph.get_tensor_by_name('detection_masks:0')
- num_detections = inference_graph.get_tensor_by_name('num_detections:0')
- (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
- num_detections_np) = sess.run(
- [boxes, scores, classes, keypoints, masks, num_detections],
- feed_dict={tf_example: tf_example_np})
- self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
- [0.5, 0.5, 0.8, 0.8]],
- [[0.5, 0.5, 1.0, 1.0],
- [0.0, 0.0, 0.0, 0.0]]])
- self.assertAllClose(scores_np, [[0.7, 0.6],
- [0.9, 0.0]])
- self.assertAllClose(classes_np, [[1, 2],
- [2, 1]])
- self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
- self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
- self.assertAllClose(num_detections_np, [2, 1])
-
- def test_export_graph_saves_pipeline_file(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=True)
- output_directory = os.path.join(tmp_dir, 'output')
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel()
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- exporter.export_inference_graph(
- input_type='image_tensor',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
- expected_pipeline_path = os.path.join(
- output_directory, 'pipeline.config')
- self.assertTrue(os.path.exists(expected_pipeline_path))
-
- written_pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- with tf.gfile.GFile(expected_pipeline_path, 'r') as f:
- proto_str = f.read()
- text_format.Merge(proto_str, written_pipeline_config)
- self.assertProtoEquals(pipeline_config, written_pipeline_config)
-
- def test_export_saved_model_and_run_inference(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=False)
- output_directory = os.path.join(tmp_dir, 'output')
- saved_model_path = os.path.join(output_directory, 'saved_model')
-
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel(
- add_detection_keypoints=True, add_detection_masks=True)
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- exporter.export_inference_graph(
- input_type='tf_example',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
-
- tf_example_np = np.hstack([self._create_tf_example(
- np.ones((4, 4, 3)).astype(np.uint8))] * 2)
- with tf.Graph().as_default() as od_graph:
- with self.test_session(graph=od_graph) as sess:
- meta_graph = tf.saved_model.loader.load(
- sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
-
- signature = meta_graph.signature_def['serving_default']
- input_tensor_name = signature.inputs['inputs'].name
- tf_example = od_graph.get_tensor_by_name(input_tensor_name)
-
- boxes = od_graph.get_tensor_by_name(
- signature.outputs['detection_boxes'].name)
- scores = od_graph.get_tensor_by_name(
- signature.outputs['detection_scores'].name)
- classes = od_graph.get_tensor_by_name(
- signature.outputs['detection_classes'].name)
- keypoints = od_graph.get_tensor_by_name(
- signature.outputs['detection_keypoints'].name)
- masks = od_graph.get_tensor_by_name(
- signature.outputs['detection_masks'].name)
- num_detections = od_graph.get_tensor_by_name(
- signature.outputs['num_detections'].name)
-
- (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
- num_detections_np) = sess.run(
- [boxes, scores, classes, keypoints, masks, num_detections],
- feed_dict={tf_example: tf_example_np})
- self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
- [0.5, 0.5, 0.8, 0.8]],
- [[0.5, 0.5, 1.0, 1.0],
- [0.0, 0.0, 0.0, 0.0]]])
- self.assertAllClose(scores_np, [[0.7, 0.6],
- [0.9, 0.0]])
- self.assertAllClose(classes_np, [[1, 2],
- [2, 1]])
- self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
- self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
- self.assertAllClose(num_detections_np, [2, 1])
-
- def test_write_saved_model(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=False)
- output_directory = os.path.join(tmp_dir, 'output')
- saved_model_path = os.path.join(output_directory, 'saved_model')
- tf.gfile.MakeDirs(output_directory)
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel(
- add_detection_keypoints=True, add_detection_masks=True)
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- detection_model = model_builder.build(pipeline_config.model,
- is_training=False)
- outputs, placeholder_tensor = exporter.build_detection_graph(
- input_type='tf_example',
- detection_model=detection_model,
- input_shape=None,
- output_collection_name='inference_op',
- graph_hook_fn=None)
- output_node_names = ','.join(outputs.keys())
- saver = tf.train.Saver()
- input_saver_def = saver.as_saver_def()
- frozen_graph_def = exporter.freeze_graph_with_def_protos(
- input_graph_def=tf.get_default_graph().as_graph_def(),
- input_saver_def=input_saver_def,
- input_checkpoint=trained_checkpoint_prefix,
- output_node_names=output_node_names,
- restore_op_name='save/restore_all',
- filename_tensor_name='save/Const:0',
- output_graph='',
- clear_devices=True,
- initializer_nodes='')
- exporter.write_saved_model(
- saved_model_path=saved_model_path,
- frozen_graph_def=frozen_graph_def,
- inputs=placeholder_tensor,
- outputs=outputs)
-
- tf_example_np = np.hstack([self._create_tf_example(
- np.ones((4, 4, 3)).astype(np.uint8))] * 2)
- with tf.Graph().as_default() as od_graph:
- with self.test_session(graph=od_graph) as sess:
- meta_graph = tf.saved_model.loader.load(
- sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
-
- signature = meta_graph.signature_def['serving_default']
- input_tensor_name = signature.inputs['inputs'].name
- tf_example = od_graph.get_tensor_by_name(input_tensor_name)
-
- boxes = od_graph.get_tensor_by_name(
- signature.outputs['detection_boxes'].name)
- scores = od_graph.get_tensor_by_name(
- signature.outputs['detection_scores'].name)
- classes = od_graph.get_tensor_by_name(
- signature.outputs['detection_classes'].name)
- keypoints = od_graph.get_tensor_by_name(
- signature.outputs['detection_keypoints'].name)
- masks = od_graph.get_tensor_by_name(
- signature.outputs['detection_masks'].name)
- num_detections = od_graph.get_tensor_by_name(
- signature.outputs['num_detections'].name)
-
- (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
- num_detections_np) = sess.run(
- [boxes, scores, classes, keypoints, masks, num_detections],
- feed_dict={tf_example: tf_example_np})
- self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
- [0.5, 0.5, 0.8, 0.8]],
- [[0.5, 0.5, 1.0, 1.0],
- [0.0, 0.0, 0.0, 0.0]]])
- self.assertAllClose(scores_np, [[0.7, 0.6],
- [0.9, 0.0]])
- self.assertAllClose(classes_np, [[1, 2],
- [2, 1]])
- self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
- self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
- self.assertAllClose(num_detections_np, [2, 1])
-
- def test_export_checkpoint_and_run_inference(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=False)
- output_directory = os.path.join(tmp_dir, 'output')
- model_path = os.path.join(output_directory, 'model.ckpt')
- meta_graph_path = model_path + '.meta'
-
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel(
- add_detection_keypoints=True, add_detection_masks=True)
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- exporter.export_inference_graph(
- input_type='tf_example',
- pipeline_config=pipeline_config,
- trained_checkpoint_prefix=trained_checkpoint_prefix,
- output_directory=output_directory)
-
- tf_example_np = np.hstack([self._create_tf_example(
- np.ones((4, 4, 3)).astype(np.uint8))] * 2)
- with tf.Graph().as_default() as od_graph:
- with self.test_session(graph=od_graph) as sess:
- new_saver = tf.train.import_meta_graph(meta_graph_path)
- new_saver.restore(sess, model_path)
-
- tf_example = od_graph.get_tensor_by_name('tf_example:0')
- boxes = od_graph.get_tensor_by_name('detection_boxes:0')
- scores = od_graph.get_tensor_by_name('detection_scores:0')
- classes = od_graph.get_tensor_by_name('detection_classes:0')
- keypoints = od_graph.get_tensor_by_name('detection_keypoints:0')
- masks = od_graph.get_tensor_by_name('detection_masks:0')
- num_detections = od_graph.get_tensor_by_name('num_detections:0')
- (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
- num_detections_np) = sess.run(
- [boxes, scores, classes, keypoints, masks, num_detections],
- feed_dict={tf_example: tf_example_np})
- self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
- [0.5, 0.5, 0.8, 0.8]],
- [[0.5, 0.5, 1.0, 1.0],
- [0.0, 0.0, 0.0, 0.0]]])
- self.assertAllClose(scores_np, [[0.7, 0.6],
- [0.9, 0.0]])
- self.assertAllClose(classes_np, [[1, 2],
- [2, 1]])
- self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
- self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
- self.assertAllClose(num_detections_np, [2, 1])
-
- def test_write_graph_and_checkpoint(self):
- tmp_dir = self.get_temp_dir()
- trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
- self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
- use_moving_averages=False)
- output_directory = os.path.join(tmp_dir, 'output')
- model_path = os.path.join(output_directory, 'model.ckpt')
- meta_graph_path = model_path + '.meta'
- tf.gfile.MakeDirs(output_directory)
- with mock.patch.object(
- model_builder, 'build', autospec=True) as mock_builder:
- mock_builder.return_value = FakeModel(
- add_detection_keypoints=True, add_detection_masks=True)
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = False
- detection_model = model_builder.build(pipeline_config.model,
- is_training=False)
- exporter.build_detection_graph(
- input_type='tf_example',
- detection_model=detection_model,
- input_shape=None,
- output_collection_name='inference_op',
- graph_hook_fn=None)
- saver = tf.train.Saver()
- input_saver_def = saver.as_saver_def()
- exporter.write_graph_and_checkpoint(
- inference_graph_def=tf.get_default_graph().as_graph_def(),
- model_path=model_path,
- input_saver_def=input_saver_def,
- trained_checkpoint_prefix=trained_checkpoint_prefix)
-
- tf_example_np = np.hstack([self._create_tf_example(
- np.ones((4, 4, 3)).astype(np.uint8))] * 2)
- with tf.Graph().as_default() as od_graph:
- with self.test_session(graph=od_graph) as sess:
- new_saver = tf.train.import_meta_graph(meta_graph_path)
- new_saver.restore(sess, model_path)
-
- tf_example = od_graph.get_tensor_by_name('tf_example:0')
- boxes = od_graph.get_tensor_by_name('detection_boxes:0')
- scores = od_graph.get_tensor_by_name('detection_scores:0')
- raw_boxes = od_graph.get_tensor_by_name('raw_detection_boxes:0')
- raw_scores = od_graph.get_tensor_by_name('raw_detection_scores:0')
- classes = od_graph.get_tensor_by_name('detection_classes:0')
- keypoints = od_graph.get_tensor_by_name('detection_keypoints:0')
- masks = od_graph.get_tensor_by_name('detection_masks:0')
- num_detections = od_graph.get_tensor_by_name('num_detections:0')
- (boxes_np, scores_np, raw_boxes_np, raw_scores_np, classes_np,
- keypoints_np, masks_np, num_detections_np) = sess.run(
- [boxes, scores, raw_boxes, raw_scores, classes, keypoints, masks,
- num_detections],
- feed_dict={tf_example: tf_example_np})
- self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
- [0.5, 0.5, 0.8, 0.8]],
- [[0.5, 0.5, 1.0, 1.0],
- [0.0, 0.0, 0.0, 0.0]]])
- self.assertAllClose(scores_np, [[0.7, 0.6],
- [0.9, 0.0]])
- self.assertAllClose(raw_boxes_np, [[[0.0, 0.0, 0.5, 0.5],
- [0.5, 0.5, 0.8, 0.8]],
- [[0.5, 0.5, 1.0, 1.0],
- [0.0, 0.5, 0.0, 0.5]]])
- self.assertAllClose(raw_scores_np, [[0.7, 0.6],
- [0.9, 0.5]])
- self.assertAllClose(classes_np, [[1, 2],
- [2, 1]])
- self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
- self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
- self.assertAllClose(num_detections_np, [2, 1])
-
- def test_rewrite_nn_resize_op(self):
- g = tf.Graph()
- with g.as_default():
- x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
- y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8))
- s = ops.nearest_neighbor_upsampling(x, 2)
- t = s + y
- exporter.rewrite_nn_resize_op()
-
- resize_op_found = False
- for op in g.get_operations():
- if op.type == 'ResizeNearestNeighbor':
- resize_op_found = True
- self.assertEqual(op.inputs[0], x)
- self.assertEqual(op.outputs[0].consumers()[0], t.op)
- break
-
- self.assertTrue(resize_op_found)
-
- def test_rewrite_nn_resize_op_quantized(self):
- g = tf.Graph()
- with g.as_default():
- x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
- x_conv = tf.contrib.slim.conv2d(x, 8, 1)
- y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8))
- s = ops.nearest_neighbor_upsampling(x_conv, 2)
- t = s + y
-
- graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
- graph_rewriter_config.quantization.delay = 500000
- graph_rewriter_fn = graph_rewriter_builder.build(
- graph_rewriter_config, is_training=False)
- graph_rewriter_fn()
-
- exporter.rewrite_nn_resize_op(is_quantized=True)
-
- resize_op_found = False
- for op in g.get_operations():
- if op.type == 'ResizeNearestNeighbor':
- resize_op_found = True
- self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars')
- self.assertEqual(op.outputs[0].consumers()[0], t.op)
- break
-
- self.assertTrue(resize_op_found)
-
-
- if __name__ == '__main__':
- tf.test.main()
|