You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1004 lines
48 KiB

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.export_inference_graph."""
import os
import numpy as np
import six
import tensorflow as tf
from google.protobuf import text_format
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from object_detection import exporter
from object_detection.builders import graph_rewriter_builder
from object_detection.builders import model_builder
from object_detection.core import model
from object_detection.protos import graph_rewriter_pb2
from object_detection.protos import pipeline_pb2
from object_detection.utils import ops
if six.PY2:
import mock # pylint: disable=g-import-not-at-top
else:
from unittest import mock # pylint: disable=g-import-not-at-top
slim = tf.contrib.slim
class FakeModel(model.DetectionModel):
def __init__(self, add_detection_keypoints=False, add_detection_masks=False):
self._add_detection_keypoints = add_detection_keypoints
self._add_detection_masks = add_detection_masks
def preprocess(self, inputs):
true_image_shapes = [] # Doesn't matter for the fake model.
return tf.identity(inputs), true_image_shapes
def predict(self, preprocessed_inputs, true_image_shapes):
return {'image': tf.layers.conv2d(preprocessed_inputs, 3, 1)}
def postprocess(self, prediction_dict, true_image_shapes):
with tf.control_dependencies(prediction_dict.values()):
postprocessed_tensors = {
'detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]], tf.float32),
'detection_scores': tf.constant([[0.7, 0.6],
[0.9, 0.0]], tf.float32),
'detection_classes': tf.constant([[0, 1],
[1, 0]], tf.float32),
'num_detections': tf.constant([2, 1], tf.float32),
'raw_detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.5, 0.0, 0.5]]],
tf.float32),
'raw_detection_scores': tf.constant([[0.7, 0.6],
[0.9, 0.5]], tf.float32),
}
if self._add_detection_keypoints:
postprocessed_tensors['detection_keypoints'] = tf.constant(
np.arange(48).reshape([2, 2, 6, 2]), tf.float32)
if self._add_detection_masks:
postprocessed_tensors['detection_masks'] = tf.constant(
np.arange(64).reshape([2, 2, 4, 4]), tf.float32)
return postprocessed_tensors
def restore_map(self, checkpoint_path, fine_tune_checkpoint_type):
pass
def loss(self, prediction_dict, true_image_shapes):
pass
def regularization_losses(self):
pass
def updates(self):
pass
class ExportInferenceGraphTest(tf.test.TestCase):
def _save_checkpoint_from_mock_model(self,
checkpoint_path,
use_moving_averages,
enable_quantization=False):
g = tf.Graph()
with g.as_default():
mock_model = FakeModel()
preprocessed_inputs, true_image_shapes = mock_model.preprocess(
tf.placeholder(tf.float32, shape=[None, None, None, 3]))
predictions = mock_model.predict(preprocessed_inputs, true_image_shapes)
mock_model.postprocess(predictions, true_image_shapes)
if use_moving_averages:
tf.train.ExponentialMovingAverage(0.0).apply()
tf.train.get_or_create_global_step()
if enable_quantization:
graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_config.quantization.delay = 500000
graph_rewriter_fn = graph_rewriter_builder.build(
graph_rewriter_config, is_training=False)
graph_rewriter_fn()
saver = tf.train.Saver()
init = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init)
saver.save(sess, checkpoint_path)
def _load_inference_graph(self, inference_graph_path, is_binary=True):
od_graph = tf.Graph()
with od_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(inference_graph_path) as fid:
if is_binary:
od_graph_def.ParseFromString(fid.read())
else:
text_format.Parse(fid.read(), od_graph_def)
tf.import_graph_def(od_graph_def, name='')
return od_graph
def _create_tf_example(self, image_array):
with self.test_session():
encoded_image = tf.image.encode_jpeg(tf.constant(image_array)).eval()
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
example = tf.train.Example(features=tf.train.Features(feature={
'image/encoded': _bytes_feature(encoded_image),
'image/format': _bytes_feature('jpg'),
'image/source_id': _bytes_feature('image_id')
})).SerializeToString()
return example
def test_export_graph_with_image_tensor_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
def test_write_inference_graph(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory,
write_inference_graph=True)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'inference_graph.pbtxt')))
def test_export_graph_with_fixed_size_image_tensor_input(self):
input_shape = [1, 320, 320, 3]
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(
trained_checkpoint_prefix, use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory,
input_shape=input_shape)
saved_model_path = os.path.join(output_directory, 'saved_model')
self.assertTrue(
os.path.exists(os.path.join(saved_model_path, 'saved_model.pb')))
with tf.Graph().as_default() as od_graph:
with self.test_session(graph=od_graph) as sess:
meta_graph = tf.saved_model.loader.load(
sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
signature = meta_graph.signature_def['serving_default']
input_tensor_name = signature.inputs['inputs'].name
image_tensor = od_graph.get_tensor_by_name(input_tensor_name)
self.assertSequenceEqual(image_tensor.get_shape().as_list(),
input_shape)
def test_export_graph_with_tf_example_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
def test_export_graph_with_encoded_image_string_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='encoded_image_string_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
def _get_variables_in_checkpoint(self, checkpoint_file):
return set([
var_name
for var_name, _ in tf.train.list_variables(checkpoint_file)])
def test_replace_variable_values_with_moving_averages(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
new_checkpoint_prefix = os.path.join(tmp_dir, 'new.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
graph = tf.Graph()
with graph.as_default():
fake_model = FakeModel()
preprocessed_inputs, true_image_shapes = fake_model.preprocess(
tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3]))
predictions = fake_model.predict(preprocessed_inputs, true_image_shapes)
fake_model.postprocess(predictions, true_image_shapes)
exporter.replace_variable_values_with_moving_averages(
graph, trained_checkpoint_prefix, new_checkpoint_prefix)
expected_variables = set(['conv2d/bias', 'conv2d/kernel'])
variables_in_old_ckpt = self._get_variables_in_checkpoint(
trained_checkpoint_prefix)
self.assertIn('conv2d/bias/ExponentialMovingAverage',
variables_in_old_ckpt)
self.assertIn('conv2d/kernel/ExponentialMovingAverage',
variables_in_old_ckpt)
variables_in_new_ckpt = self._get_variables_in_checkpoint(
new_checkpoint_prefix)
self.assertTrue(expected_variables.issubset(variables_in_new_ckpt))
self.assertNotIn('conv2d/bias/ExponentialMovingAverage',
variables_in_new_ckpt)
self.assertNotIn('conv2d/kernel/ExponentialMovingAverage',
variables_in_new_ckpt)
def test_export_graph_with_moving_averages(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = True
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
expected_variables = set(['conv2d/bias', 'conv2d/kernel', 'global_step'])
actual_variables = set(
[var_name for var_name, _ in tf.train.list_variables(output_directory)])
self.assertTrue(expected_variables.issubset(actual_variables))
def test_export_model_with_quantization_nodes(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(
trained_checkpoint_prefix,
use_moving_averages=False,
enable_quantization=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'inference_graph.pbtxt')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
text_format.Merge(
"""graph_rewriter {
quantization {
delay: 50000
activation_bits: 8
weight_bits: 8
}
}""", pipeline_config)
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory,
write_inference_graph=True)
self._load_inference_graph(inference_graph_path, is_binary=False)
has_quant_nodes = False
for v in tf.global_variables():
if v.op.name.endswith('act_quant/min'):
has_quant_nodes = True
break
self.assertTrue(has_quant_nodes)
def test_export_model_with_all_output_nodes(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph):
inference_graph.get_tensor_by_name('image_tensor:0')
inference_graph.get_tensor_by_name('detection_boxes:0')
inference_graph.get_tensor_by_name('detection_scores:0')
inference_graph.get_tensor_by_name('detection_classes:0')
inference_graph.get_tensor_by_name('detection_keypoints:0')
inference_graph.get_tensor_by_name('detection_masks:0')
inference_graph.get_tensor_by_name('num_detections:0')
def test_export_model_with_detection_only_nodes(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(add_detection_masks=False)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph):
inference_graph.get_tensor_by_name('image_tensor:0')
inference_graph.get_tensor_by_name('detection_boxes:0')
inference_graph.get_tensor_by_name('detection_scores:0')
inference_graph.get_tensor_by_name('detection_classes:0')
inference_graph.get_tensor_by_name('num_detections:0')
with self.assertRaises(KeyError):
inference_graph.get_tensor_by_name('detection_keypoints:0')
inference_graph.get_tensor_by_name('detection_masks:0')
def test_export_and_run_inference_with_image_tensor(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph) as sess:
image_tensor = inference_graph.get_tensor_by_name('image_tensor:0')
boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
scores = inference_graph.get_tensor_by_name('detection_scores:0')
classes = inference_graph.get_tensor_by_name('detection_classes:0')
keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
masks = inference_graph.get_tensor_by_name('detection_masks:0')
num_detections = inference_graph.get_tensor_by_name('num_detections:0')
(boxes_np, scores_np, classes_np, keypoints_np, masks_np,
num_detections_np) = sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={image_tensor: np.ones((2, 4, 4, 3)).astype(np.uint8)})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def _create_encoded_image_string(self, image_array_np, encoding_format):
od_graph = tf.Graph()
with od_graph.as_default():
if encoding_format == 'jpg':
encoded_string = tf.image.encode_jpeg(image_array_np)
elif encoding_format == 'png':
encoded_string = tf.image.encode_png(image_array_np)
else:
raise ValueError('Supports only the following formats: `jpg`, `png`')
with self.test_session(graph=od_graph):
return encoded_string.eval()
def test_export_and_run_inference_with_encoded_image_string_tensor(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='encoded_image_string_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
jpg_image_str = self._create_encoded_image_string(
np.ones((4, 4, 3)).astype(np.uint8), 'jpg')
png_image_str = self._create_encoded_image_string(
np.ones((4, 4, 3)).astype(np.uint8), 'png')
with self.test_session(graph=inference_graph) as sess:
image_str_tensor = inference_graph.get_tensor_by_name(
'encoded_image_string_tensor:0')
boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
scores = inference_graph.get_tensor_by_name('detection_scores:0')
classes = inference_graph.get_tensor_by_name('detection_classes:0')
keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
masks = inference_graph.get_tensor_by_name('detection_masks:0')
num_detections = inference_graph.get_tensor_by_name('num_detections:0')
for image_str in [jpg_image_str, png_image_str]:
image_str_batch_np = np.hstack([image_str]* 2)
(boxes_np, scores_np, classes_np, keypoints_np, masks_np,
num_detections_np) = sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={image_str_tensor: image_str_batch_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def test_raise_runtime_error_on_images_with_different_sizes(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='encoded_image_string_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
large_image = self._create_encoded_image_string(
np.ones((4, 4, 3)).astype(np.uint8), 'jpg')
small_image = self._create_encoded_image_string(
np.ones((2, 2, 3)).astype(np.uint8), 'jpg')
image_str_batch_np = np.hstack([large_image, small_image])
with self.test_session(graph=inference_graph) as sess:
image_str_tensor = inference_graph.get_tensor_by_name(
'encoded_image_string_tensor:0')
boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
scores = inference_graph.get_tensor_by_name('detection_scores:0')
classes = inference_graph.get_tensor_by_name('detection_classes:0')
keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
masks = inference_graph.get_tensor_by_name('detection_masks:0')
num_detections = inference_graph.get_tensor_by_name('num_detections:0')
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
'TensorArray.*shape'):
sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={image_str_tensor: image_str_batch_np})
def test_export_and_run_inference_with_tf_example(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
tf_example_np = np.expand_dims(self._create_tf_example(
np.ones((4, 4, 3)).astype(np.uint8)), axis=0)
with self.test_session(graph=inference_graph) as sess:
tf_example = inference_graph.get_tensor_by_name('tf_example:0')
boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
scores = inference_graph.get_tensor_by_name('detection_scores:0')
classes = inference_graph.get_tensor_by_name('detection_classes:0')
keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
masks = inference_graph.get_tensor_by_name('detection_masks:0')
num_detections = inference_graph.get_tensor_by_name('num_detections:0')
(boxes_np, scores_np, classes_np, keypoints_np, masks_np,
num_detections_np) = sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={tf_example: tf_example_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def test_write_frozen_graph(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
tf.gfile.MakeDirs(output_directory)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
detection_model = model_builder.build(pipeline_config.model,
is_training=False)
outputs, _ = exporter.build_detection_graph(
input_type='tf_example',
detection_model=detection_model,
input_shape=None,
output_collection_name='inference_op',
graph_hook_fn=None)
output_node_names = ','.join(outputs.keys())
saver = tf.train.Saver()
input_saver_def = saver.as_saver_def()
exporter.freeze_graph_with_def_protos(
input_graph_def=tf.get_default_graph().as_graph_def(),
input_saver_def=input_saver_def,
input_checkpoint=trained_checkpoint_prefix,
output_node_names=output_node_names,
restore_op_name='save/restore_all',
filename_tensor_name='save/Const:0',
output_graph=inference_graph_path,
clear_devices=True,
initializer_nodes='')
inference_graph = self._load_inference_graph(inference_graph_path)
tf_example_np = np.expand_dims(self._create_tf_example(
np.ones((4, 4, 3)).astype(np.uint8)), axis=0)
with self.test_session(graph=inference_graph) as sess:
tf_example = inference_graph.get_tensor_by_name('tf_example:0')
boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
scores = inference_graph.get_tensor_by_name('detection_scores:0')
classes = inference_graph.get_tensor_by_name('detection_classes:0')
keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
masks = inference_graph.get_tensor_by_name('detection_masks:0')
num_detections = inference_graph.get_tensor_by_name('num_detections:0')
(boxes_np, scores_np, classes_np, keypoints_np, masks_np,
num_detections_np) = sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={tf_example: tf_example_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def test_export_graph_saves_pipeline_file(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
expected_pipeline_path = os.path.join(
output_directory, 'pipeline.config')
self.assertTrue(os.path.exists(expected_pipeline_path))
written_pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
with tf.gfile.GFile(expected_pipeline_path, 'r') as f:
proto_str = f.read()
text_format.Merge(proto_str, written_pipeline_config)
self.assertProtoEquals(pipeline_config, written_pipeline_config)
def test_export_saved_model_and_run_inference(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
output_directory = os.path.join(tmp_dir, 'output')
saved_model_path = os.path.join(output_directory, 'saved_model')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
tf_example_np = np.hstack([self._create_tf_example(
np.ones((4, 4, 3)).astype(np.uint8))] * 2)
with tf.Graph().as_default() as od_graph:
with self.test_session(graph=od_graph) as sess:
meta_graph = tf.saved_model.loader.load(
sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
signature = meta_graph.signature_def['serving_default']
input_tensor_name = signature.inputs['inputs'].name
tf_example = od_graph.get_tensor_by_name(input_tensor_name)
boxes = od_graph.get_tensor_by_name(
signature.outputs['detection_boxes'].name)
scores = od_graph.get_tensor_by_name(
signature.outputs['detection_scores'].name)
classes = od_graph.get_tensor_by_name(
signature.outputs['detection_classes'].name)
keypoints = od_graph.get_tensor_by_name(
signature.outputs['detection_keypoints'].name)
masks = od_graph.get_tensor_by_name(
signature.outputs['detection_masks'].name)
num_detections = od_graph.get_tensor_by_name(
signature.outputs['num_detections'].name)
(boxes_np, scores_np, classes_np, keypoints_np, masks_np,
num_detections_np) = sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={tf_example: tf_example_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def test_write_saved_model(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
output_directory = os.path.join(tmp_dir, 'output')
saved_model_path = os.path.join(output_directory, 'saved_model')
tf.gfile.MakeDirs(output_directory)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
detection_model = model_builder.build(pipeline_config.model,
is_training=False)
outputs, placeholder_tensor = exporter.build_detection_graph(
input_type='tf_example',
detection_model=detection_model,
input_shape=None,
output_collection_name='inference_op',
graph_hook_fn=None)
output_node_names = ','.join(outputs.keys())
saver = tf.train.Saver()
input_saver_def = saver.as_saver_def()
frozen_graph_def = exporter.freeze_graph_with_def_protos(
input_graph_def=tf.get_default_graph().as_graph_def(),
input_saver_def=input_saver_def,
input_checkpoint=trained_checkpoint_prefix,
output_node_names=output_node_names,
restore_op_name='save/restore_all',
filename_tensor_name='save/Const:0',
output_graph='',
clear_devices=True,
initializer_nodes='')
exporter.write_saved_model(
saved_model_path=saved_model_path,
frozen_graph_def=frozen_graph_def,
inputs=placeholder_tensor,
outputs=outputs)
tf_example_np = np.hstack([self._create_tf_example(
np.ones((4, 4, 3)).astype(np.uint8))] * 2)
with tf.Graph().as_default() as od_graph:
with self.test_session(graph=od_graph) as sess:
meta_graph = tf.saved_model.loader.load(
sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
signature = meta_graph.signature_def['serving_default']
input_tensor_name = signature.inputs['inputs'].name
tf_example = od_graph.get_tensor_by_name(input_tensor_name)
boxes = od_graph.get_tensor_by_name(
signature.outputs['detection_boxes'].name)
scores = od_graph.get_tensor_by_name(
signature.outputs['detection_scores'].name)
classes = od_graph.get_tensor_by_name(
signature.outputs['detection_classes'].name)
keypoints = od_graph.get_tensor_by_name(
signature.outputs['detection_keypoints'].name)
masks = od_graph.get_tensor_by_name(
signature.outputs['detection_masks'].name)
num_detections = od_graph.get_tensor_by_name(
signature.outputs['num_detections'].name)
(boxes_np, scores_np, classes_np, keypoints_np, masks_np,
num_detections_np) = sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={tf_example: tf_example_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def test_export_checkpoint_and_run_inference(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
output_directory = os.path.join(tmp_dir, 'output')
model_path = os.path.join(output_directory, 'model.ckpt')
meta_graph_path = model_path + '.meta'
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
tf_example_np = np.hstack([self._create_tf_example(
np.ones((4, 4, 3)).astype(np.uint8))] * 2)
with tf.Graph().as_default() as od_graph:
with self.test_session(graph=od_graph) as sess:
new_saver = tf.train.import_meta_graph(meta_graph_path)
new_saver.restore(sess, model_path)
tf_example = od_graph.get_tensor_by_name('tf_example:0')
boxes = od_graph.get_tensor_by_name('detection_boxes:0')
scores = od_graph.get_tensor_by_name('detection_scores:0')
classes = od_graph.get_tensor_by_name('detection_classes:0')
keypoints = od_graph.get_tensor_by_name('detection_keypoints:0')
masks = od_graph.get_tensor_by_name('detection_masks:0')
num_detections = od_graph.get_tensor_by_name('num_detections:0')
(boxes_np, scores_np, classes_np, keypoints_np, masks_np,
num_detections_np) = sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={tf_example: tf_example_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def test_write_graph_and_checkpoint(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
output_directory = os.path.join(tmp_dir, 'output')
model_path = os.path.join(output_directory, 'model.ckpt')
meta_graph_path = model_path + '.meta'
tf.gfile.MakeDirs(output_directory)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
detection_model = model_builder.build(pipeline_config.model,
is_training=False)
exporter.build_detection_graph(
input_type='tf_example',
detection_model=detection_model,
input_shape=None,
output_collection_name='inference_op',
graph_hook_fn=None)
saver = tf.train.Saver()
input_saver_def = saver.as_saver_def()
exporter.write_graph_and_checkpoint(
inference_graph_def=tf.get_default_graph().as_graph_def(),
model_path=model_path,
input_saver_def=input_saver_def,
trained_checkpoint_prefix=trained_checkpoint_prefix)
tf_example_np = np.hstack([self._create_tf_example(
np.ones((4, 4, 3)).astype(np.uint8))] * 2)
with tf.Graph().as_default() as od_graph:
with self.test_session(graph=od_graph) as sess:
new_saver = tf.train.import_meta_graph(meta_graph_path)
new_saver.restore(sess, model_path)
tf_example = od_graph.get_tensor_by_name('tf_example:0')
boxes = od_graph.get_tensor_by_name('detection_boxes:0')
scores = od_graph.get_tensor_by_name('detection_scores:0')
raw_boxes = od_graph.get_tensor_by_name('raw_detection_boxes:0')
raw_scores = od_graph.get_tensor_by_name('raw_detection_scores:0')
classes = od_graph.get_tensor_by_name('detection_classes:0')
keypoints = od_graph.get_tensor_by_name('detection_keypoints:0')
masks = od_graph.get_tensor_by_name('detection_masks:0')
num_detections = od_graph.get_tensor_by_name('num_detections:0')
(boxes_np, scores_np, raw_boxes_np, raw_scores_np, classes_np,
keypoints_np, masks_np, num_detections_np) = sess.run(
[boxes, scores, raw_boxes, raw_scores, classes, keypoints, masks,
num_detections],
feed_dict={tf_example: tf_example_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(raw_boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.5, 0.0, 0.5]]])
self.assertAllClose(raw_scores_np, [[0.7, 0.6],
[0.9, 0.5]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def test_rewrite_nn_resize_op(self):
g = tf.Graph()
with g.as_default():
x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8))
s = ops.nearest_neighbor_upsampling(x, 2)
t = s + y
exporter.rewrite_nn_resize_op()
resize_op_found = False
for op in g.get_operations():
if op.type == 'ResizeNearestNeighbor':
resize_op_found = True
self.assertEqual(op.inputs[0], x)
self.assertEqual(op.outputs[0].consumers()[0], t.op)
break
self.assertTrue(resize_op_found)
def test_rewrite_nn_resize_op_quantized(self):
g = tf.Graph()
with g.as_default():
x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
x_conv = tf.contrib.slim.conv2d(x, 8, 1)
y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8))
s = ops.nearest_neighbor_upsampling(x_conv, 2)
t = s + y
graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_config.quantization.delay = 500000
graph_rewriter_fn = graph_rewriter_builder.build(
graph_rewriter_config, is_training=False)
graph_rewriter_fn()
exporter.rewrite_nn_resize_op(is_quantized=True)
resize_op_found = False
for op in g.get_operations():
if op.type == 'ResizeNearestNeighbor':
resize_op_found = True
self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars')
self.assertEqual(op.outputs[0].consumers()[0], t.op)
break
self.assertTrue(resize_op_found)
if __name__ == '__main__':
tf.test.main()